A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Response of two cyanobacterial strains to non-biodegradable glitter particles. | LitMetric

Response of two cyanobacterial strains to non-biodegradable glitter particles.

Aquat Toxicol

Center of Nuclear Energy in Agriculture (CENA/USP), University of São Paulo, Piracicaba, SP, CEP: 13416-903, Brazil. Electronic address:

Published: July 2023

Microplastic pollution is a growing concern mainly in aquatic environments due to its deleterious effects. Some types of microplastics, such as glitter, remain overlooked. Glitter particles are artificial reflective microplastics used by different consumers within arts and handcraft products. In nature, glitter can physically affect phytoplankton by causing shade or acting as a sunlight-reflective surface, influencing primary production. This study aimed to evaluate the effects of five concentrations of non-biodegradable glitter particles in two bloom-forming cyanobacterial strains, Microcystis aeruginosa CENA508 (unicellular) and Nodularia spumigena CENA596 (filamentous). Cellular growth rate, estimated by optical density (OD), demonstrated that the applied highest glitter dosage decreases cyanobacterial growth rate with a more evident effect on M. aeruginosa CENA508. The cellular biovolume of N. spumigena CENA596 increased following the application of high concentrations of glitter. Still, no significant difference was detected in chlorophyll-a and carotenoids' contents for both strains. These results suggest that environmental concentrations of glitter, similar to the highest dosage tested (>200 mg L), may negatively influence susceptible organisms of the aquatic ecosystems, as observed with M. aeruginosa CENA508 and N. spumigena CENA596.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2023.106590DOI Listing

Publication Analysis

Top Keywords

glitter particles
12
aeruginosa cena508
12
spumigena cena596
12
cyanobacterial strains
8
glitter
8
non-biodegradable glitter
8
growth rate
8
concentrations glitter
8
response cyanobacterial
4
strains non-biodegradable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!