FeO quantum dots mediated P-g-CN/BiOI as an efficient and recyclable Z-scheme photo-Fenton catalyst for tetracycline degradation and bacterial inactivation.

J Hazard Mater

Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

Published: August 2023

Photo-Fenton technology integrated by photocatalysis and Fenton reaction is a favorable strategy for water remediation. Nevertheless, the development of visible-light-assisted efficient and recyclable photo-Fenton catalysts still faces challenges. This study successfully constructed a novel separable Z-scheme P-g-CN/FeOQDs/BiOI (PCN/FOQDs/BOI) heterojunction via in-situ deposition method. The results showed that the photo-Fenton degradation efficiency for tetracycline over optimal ternary catalyst reached 96.5% within 40 min at visible illumination, which was 7.1 and 9.6 times higher than its single photocatalysis and Fenton system, respectively. Moreover, PCN/FOQDs/BOI possessed excellent photo-Fenton antibacterial activity, which could completely inactivate 10 CFU·mL of E. coli and S. aureus within 20 and 40 min, respectively. Theoretical calculation and in-situ characterization revealed that the enhanced catalysis behavior resulted from the FOQDs mediated Z-scheme electronic system, which not only facilitated photocreated carrier separation of PCN and BOI while maintaining maximum redox capacity, but also accelerated HO activation and Fe/Fe cycle, thus synergistically forming more active species in system. Additionally, PCN/FOQDs/BOI/Vis/HO system displayed extensive adaptability at pH range of 3-11, removal universality for various organic pollutants and attractive magnetic separation property. This work would provide an inspiration for design of efficient and multifunctional Z-scheme photo-Fenton catalyst in water purification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131677DOI Listing

Publication Analysis

Top Keywords

efficient recyclable
8
z-scheme photo-fenton
8
photo-fenton catalyst
8
photocatalysis fenton
8
photo-fenton
6
feo quantum
4
quantum dots
4
dots mediated
4
mediated p-g-cn/bioi
4
p-g-cn/bioi efficient
4

Similar Publications

In this study, we report the modification of a monolithic γ-aluminum oxy-hydroxide (γ-AlOOH) aerogel with cellulose nanofibers (CNFs) using the sol-gel method via supercritical drying. The optimized 2% CNF (w/w) results in a monolithic CNF-γ-AlOOH that is amorphous in nature, along with C-C and C-O-C functional groups. Transmission electron microscopy (TEM) images of the as-synthesized CNF-γ-AlOOH showed CNF embedded in the γ-AlOOH aerogel.

View Article and Find Full Text PDF

Aquatic biomass, particularly microalgae and duckweed, presents a promising and sustainable alternative source of plant-based protein and bioactive compounds for food and feed applications. This review highlights the nutritional potential of these aquatic species, focusing on their high protein content, rapid growth rates, and adaptability to nonarable environments. Microalgae, such as and spp.

View Article and Find Full Text PDF

Harmless and efficient nickel enrichment from nickel-containing waste slag using vitrification technology.

Environ Sci Pollut Res Int

January 2025

Qingdao Qingli Environmental Protectionquipmen Co, LTD, Jiaozhou, 266300, China.

With the growing demand for nickel in the stainless steel and battery industries, conventional methods of extracting nickel from ores face challenges such as high production costs and environmental concerns. This study proposes a new process for the recovery of nickel metal and the production of nickel-iron alloys from nickel-bearing scrap. The reduction rates of nickel and iron oxides were investigated by optimizing the roasting temperature, time, and C/O ratio, and the process was optimized using response surface methodology (RSM).

View Article and Find Full Text PDF

Building Localized NADP(H) Recycling Circuits to Advance Enzyme Cascadetronics.

Angew Chem Int Ed Engl

January 2025

University of Oxford, Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The catalytic action of enzymes of a cascade trapped within a mesoporous electrode material is simultaneously energized, controlled and observed through the efficient, reversible electrochemical NAD(P)(H) recycling catalyzed by one of the enzymes. In their nanoconfined state, nicotinamide cofactors are tightly channeled current carriers, mediating multi-step reactions in either direction (oxidation or reduction) with a rapid response time. By incorporating a hydrogen‑borrowing enzyme pair, the internal action of which opposes the external voltage bias driving oxidation or reduction, a reduction process can be performed under overall oxidizing conditions, and vice versa.

View Article and Find Full Text PDF

Highly efficient recovery of cobalt-ion containing waste deep eutectic electrolytes: a sustainable solvent extraction approach.

ChemSusChem

January 2025

Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, No. 68 Wenchang Road, 121 Street, 650093, Kunming, CHINA.

Efficient recovery of metals from secondary resources is essential to address resource shortages and environmental crises. The development of a cheap, environmentally friendly, and highly efficient recovery pathway is essential for resource retrieval. In this study, we propose a high-efficiency extraction approach utilizing bis(2,4,4-trimethylpentyl) phosphonic acid (Cyanex272) to recover cobalt from waste choline chloride/ethylene glycol (Ethaline) electrolyte containing Co(II) ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!