A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determining the main contributing factors to nutrient concentration in rivers in arid northwest China using partial least squares structural equation modeling. | LitMetric

Understanding the main driving factors of oasis river nutrients in arid areas is important to identify the sources of water pollution and protect water resources. Twenty-seven sub-watersheds were selected in the lower oasis irrigated agricultural reaches of the Kaidu River watershed in arid Northwest China, divided into the site, riparian, and catchment buffer zones. Data on four sets of explanatory variables (topographic, soil, meteorological elements, and land use types) were collected. The relationships between explanatory variables and response variables (total phosphorus, TP and total nitrogen, TN) were analyzed by redundancy analysis (RDA). Partial least squares structural equation modeling (PLS-SEM) was used to quantify the relationship between explanatory as well as response variables and fit the path relationship among factors. The results showed that there were significant differences in the TP and TN concentrations at each sampling point. The catchment buffer exhibited the best explanatory power of the relationship between explanatory and response variables based on PLS-SEM. The effects of various land use types, meteorological elements (ME), soil, and topography in the catchment buffer were responsible for 54.3% of TP changes and for 68.5% of TN changes. Land use types, ME and soil were the main factors driving TP and TN changes, accounting for 95.56% and 94.84% of the total effects, respectively. The study provides a reference for river nutrients management in arid oases with irrigated agriculture and a scientific and targeted basis to mitigate water pollution and eutrophication of rivers in arid lands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.118249DOI Listing

Publication Analysis

Top Keywords

catchment buffer
12
land types
12
response variables
12
rivers arid
8
arid northwest
8
northwest china
8
partial squares
8
squares structural
8
structural equation
8
equation modeling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!