Development and evaluation of Newcastle disease - avian influenza bivalent vector vaccines in commercial chickens.

Int Immunopharmacol

Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, China. Electronic address:

Published: July 2023

Avian influenza (AI) and Newcastle disease (ND) are regarded as the leading viral infectious diseases affecting the global poultry industry. Vaccination is a successful therapeutic intervention to safeguard birds against both ND and AI infections. In this research, ND-AI bivalent vaccines were developed through the incorporation of HA and IRES-GMCSF gene fragments at varying locations of NDV rClone30 vectors. The two constructed vaccines were rClone30-HA-IRES-GMCSF(PM) and rClone30-HA(PM)-IRES-GMCSF(NP). Next, 27-day-old Luhua chickens (the maternal antibody level was reduced to 1.4 log2) were inoculated with the same dose of the vaccines, and humoral and cellular immune responses were assessed at multiple time points. Compared to the commercial vaccine, the levels of anti-NDV antibodies following the administration of the ND-AI vaccines were above the theoretical protection value of 4 log2. The levels of anti-AIV antibodies in the bivalent vaccine group were notably higher than those in the commercial vaccine group. Furthermore, the content of inflammatory factors and transcription levels were significantly increased in chickens administered ND-AI vaccines. The ND-AI vaccines induced stronger proliferative responses of B cells or CD3+, CD8+, and CD4 + T cells. Hematoxylin and eosin staining showed that the tissue damage induced by the two recombinant vaccines was similar to that of commercial vaccines. The outcomes of the study suggest that the two bivalent ND-AI vaccine candidates produced using the reverse genetics approach are both secure and effective. This approach not only enables the multiuse of one vaccine but also provides a new concept for the development of other vaccines against infectious viral diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.110363DOI Listing

Publication Analysis

Top Keywords

nd-ai vaccines
12
vaccines
10
newcastle disease
8
avian influenza
8
vaccines commercial
8
commercial vaccine
8
vaccine group
8
nd-ai
5
vaccine
5
development evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!