SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis.

Redox Biol

MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China. Electronic address:

Published: July 2023

Viral infection-induced cell death has long been considered as a double-edged sword in the inhibition or exacerbation of viral infections. Patients with severe Coronavirus Disease 2019 (COVID-19) are characterized by multiple organ dysfunction syndrome and cytokine storm, which may result from SARS-CoV-2-induced cell death. Previous studies have observed enhanced ROS level and signs of ferroptosis in SARS-CoV-2 infected cells or specimens of patients with COVID-19, but the exact mechanism is not clear yet. Here, we find SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. SARS-CoV-2 ORF3a promotes the degradation of NRF2 through recruiting Keap1, thereby attenuating cellular resistance to oxidative stress and facilitated cells to ferroptotic cell death. Our study uncovers that SARS-CoV-2 ORF3a functions as a positive regulator of ferroptosis, which might explain SARS-CoV-2-induced damage in multiple organs in COVID-19 patients and imply the potential of ferroptosis inhibition in COVID-19 treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202901PMC
http://dx.doi.org/10.1016/j.redox.2023.102752DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 orf3a
16
cell death
12
orf3a sensitizes
8
sensitizes cells
8
cells ferroptosis
8
ferroptosis keap1-nrf2
8
keap1-nrf2 axis
8
sars-cov-2
5
ferroptosis
5
cells
4

Similar Publications

HIV-1 Vpu and SARS-CoV-2 ORF3a proteins disrupt STING-mediated activation of antiviral NF-κB signaling.

Sci Signal

January 2025

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.

Activation of the stimulator of interferon genes (STING) pathway by cytosolic DNA leads to the activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB). Although many viruses produce proteins that inhibit IRF3-dependent antiviral responses, some viruses produce proteins that inhibit STING-induced NF-κB activation without blocking IRF3 activation. Here, we found that STING-activated, NF-κB-dependent, and IRF3-independent innate immunity inhibited the replication of the DNA virus herpes simplex virus type 1 (HSV-1), the RNA virus coxsackievirus A16 (CV-A16), and the retrovirus HIV-1.

View Article and Find Full Text PDF

As the SARS-CoV-2 coronavirus continues to evolve and infect the global population, many individuals are likely to suffer from post-acute sequelae of SARS-CoV-2 infection (PASC). Manifestations of PASC include vision symptoms, but little is known about the ability of SARS-CoV-2 to infect and impact the retinal cells. Here, we demonstrate that SARS-CoV-2 can infect and perturb the retinal pigment epithelium (RPE) in vivo, after intranasal inoculation of a transgenic mouse model of SARS-CoV-2 infection, and in cell culture.

View Article and Find Full Text PDF

CD8+ T-cell immunity, mediated through interactions between human leukocyte antigen (HLA) and the T-cell receptor (TCR), plays a pivotal role in conferring immune memory and protection against viral infections. The emergence of SARS-CoV-2 variants presents a significant challenge to the existing population immunity. While numerous SARS-CoV-2 mutations have been associated with immune evasion from CD8+ T cells, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored, particularly for epitope-specific repertoires characterized by common TCRs.

View Article and Find Full Text PDF

Proteome-Wide Analysis of Antibody Responses in Asymptomatic Omicron BA.2-Infected Individuals at the Amino Acid Resolution.

J Proteome Res

January 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China.

Humoral immunity plays a critical role in clearing SARS-CoV-2 during viral invasion. However, the proteome-wide characteristics of antibody responses in individuals infected with Omicron variant, both asymptomatic and symptomatic, remain poorly understood. We profiled the serum antibodies from 108 individuals, including healthy controls and those infected with Omicron BA.

View Article and Find Full Text PDF

Manipulation of Host Cholesterol by SARS-CoV-2.

bioRxiv

November 2024

Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA.

SARS-CoV-2 infection is associated with alterations in host lipid metabolism, including disruptions in cholesterol homeostasis. However, the specific mechanisms by which viral proteins influence cholesterol remain incompletely understood. Here, we report that SARS-CoV-2 infection induces cholesterol sequestration within lysosomes, with the viral protein ORF3a identified as the primary driver of this effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!