Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is a novel and practical method to use natural porous biomaterials as microwave absorber. In this study, NiCoS nanowires (NWs)@diatomite (De) composites with one-dimensional (1D)-NWs and three-dimensional(3D)-De composites were prepared by a two-step hydrothermal method using De as template. The effective absorption bandwidth (EAB) of the composite reaches 6.16 GHz at 1.6 mm and 7.04 GHz at 4.1 mm, covering the entire Ku band, and the minimum reflection loss (RLmin) is less than -30 dB. The excellent absorption performance is mainly due to the bulk charge modulation provided by the 1D NWs and the extended microwave transmission path within the absorber, coupled with the high dielectric loss and magnetic loss of the metal-NWS after vulcanization. We present a high-value method that combines vulcanized 1D materials with abundant De to achieve the lightweight broadband efficient microwave absorption at the first time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.05.112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!