A novel framework for the evaluation of coastal protection schemes through integration of numerical modelling and artificial intelligence into the Sand Engine App.

Sci Rep

Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Chatham Street, Liverpool, L69 7ZT, UK.

Published: May 2023

There is growing interest in the adoption of Engineering with Nature or Nature Based Solutions for coastal protection including large mega-nourishment interventions. However, there are still many unknowns on the variables and design features influencing their functionalities. There are also challenges in the optimization of coastal modelling outputs or information usage in support of decision-making. In this study, more than five hundred numerical simulations with different sandengine designs and different locations along Morecambe Bay (UK) were conducted in Delft3D. Twelve Artificial Neural Networking ensemble models structures were trained on the simulated data to predict the influence of different sand engines on water depth, wave height and sediment transports with good performance. The ensemble models were then packed into a Sand Engine App developed in MATLAB and designed to calculate the impact of different sand engine features on the above variables based on users' inputs of sandengine designs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224936PMC
http://dx.doi.org/10.1038/s41598-023-35801-5DOI Listing

Publication Analysis

Top Keywords

sand engine
12
coastal protection
8
engine app
8
sandengine designs
8
ensemble models
8
novel framework
4
framework evaluation
4
evaluation coastal
4
protection schemes
4
schemes integration
4

Similar Publications

Uneven of filling aggregate gradation may cause transportation problems such as pipe blockage due to segregation and stratification of filling slurry. To study the influence of aggregate gradation on the conveying performance of filler slurry, aggregate gradation experiments were carried out, rheological tests on slurries with coal gangue/aeolian sand ratios (6:4, 5:5 and 4:6) showed that appropriately increasing the proportion of aeolian sand can improve particle gradation. Computational fluid dynamics (CFD) scheme was used to simulate the pipeline transportation characteristics of the slurry under the conditions of three sets each of coal gangue/aeolian sand ratios, slurry concentrations (72%,74% and 76%), and inlet velocities (1.

View Article and Find Full Text PDF

The establishment of site-specific target limits (SSTLs) for old municipal solid waste (MSW) dumpsites is essential for defining remediation goals in a scientifically rigorous manner. However, a standardized framework for achieving this is currently lacking. This study proposes a comprehensive framework that integrates high-resolution site characterization (HRSC) tools, targeted sampling, and contaminant transport modeling to derive SSTLs.

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

The application of sand-clay mixtures is diverse in contemporary engineering practices, with particular emphasis on their shear strength characteristics. This study focused on the estimation of the shear strength of sand-clay mixtures using the artificial neural network (ANN) and low-field nuclear magnetic resonance (NMR) spectroscopy. In this study, NMR tests and triaxial compression tests were carried out on 160 artificial sand-clay mixtures with different mineralogical compositions, water contents, and dry densities in the laboratory to obtain the T spectra and shear strength indices, respectively.

View Article and Find Full Text PDF

Biochar has emerged as a promising soil amendment material, offering the potential to enhance mechanical and water retention properties. Geo-environmental structures constructed with biochar-amended soils (BAS) might experience a change in strength and water retention capacity due to extreme climactic changes, resulting in structural failures. The existing literature lacks a comprehensive study on the strength of BAS under prolonged curing, freeze-thaw cycles, and water retention behaviour for varying compaction conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!