Understanding how brains evolved is critical to determine the origin(s) of centralized nervous systems. Brains are patterned along their anteroposterior axis by stripes of gene expression that appear to be conserved, suggesting brains are homologous. However, the striped expression is also part of the deeply conserved anteroposterior axial program. An emerging hypothesis is that similarities in brain patterning are convergent, arising through the repeated co-option of axial programs. To resolve whether shared brain neuronal programs likely reflect convergence or homology, we investigated the evolution of axial programs in neurogenesis. We show that the bilaterian anteroposterior program patterns the nerve net of the cnidarian Nematostella along the oral-aboral axis arguing that anteroposterior programs regionalized developing nervous systems in the cnidarian-bilaterian common ancestor prior to the emergence of brains. This finding rejects shared patterning as sufficient evidence to support brain homology and provides functional support for the plausibility that axial programs could be co-opted if nervous systems centralized in multiple lineages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224969PMC
http://dx.doi.org/10.1038/s41598-023-35721-4DOI Listing

Publication Analysis

Top Keywords

nervous systems
12
axial programs
12
programs
5
brain
4
brain regulatory
4
regulatory program
4
program predates
4
predates central
4
nervous
4
central nervous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!