Research on the occurrence of microplastics in wild fish populations is a constantly growing area, requiring continuous reviews to properly keep up with the fast pace of publications and guide future work. This review analyses the scientific output of 260 field studies covering 1053 different fish taxa for the presence of microplastics. To date, microplastics have been recorded in 830 wild fish species, including 606 species of interest to commercial and subsistence fisheries. Among these, based on IUCN Red List status, 34 species are globally classified in one of the three threatened categories (Critically Endangered, Endangered or Vulnerable) and another 22 species were assessed as "Near Threatened". Of the species for which the IUCN Red List tracks population trend data, the fish species reported to have microplastics so far include 81 which are recorded as declining, 134 as stable and just 16 as increasing. This review highlights the potential implications of fish microplastic contamination to biodiversity conservation, sustainability of wild fish stocks, and human food safety and security. Finally, recommendations for future research are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.amb.2023.01.003 | DOI Listing |
Sci Rep
December 2024
Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada.
The potential risk posed by infectious agents (IAs) associated with netpen aquaculture to wild fishes is determined based on the "release" of IAs from netpens into the environment, the "exposure" of the wild fish to those released agents, and the "consequence" for wild fish experiencing infection by those agents. Information available to characterize these three factors is often lacking, and the occurrence of transmission from aquaculture to wild fish as well as potential consequences of such transmission are difficult to observe. In this study, we utilized environmental DNA (eDNA) to characterize the release of dozens of IAs from, and exposure of Pacific salmon to, Atlantic salmon aquaculture.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
EPHE-PSL, Sorbonne Université, CNRS, UMR 7619 METIS, 75005, Paris, France.
Freshwater environments are biodiversity hotspots under multiple pressures, including pesticide exposure. S-metolachlor, a widely used herbicide, can induce genotoxic, cytotoxic and physiological effects in captive fish, but we have a limited understanding of the effects of exposure to S-metolachlor in free-living vertebrates. We carried out an original field experiment using integrative approaches across biological levels and temporal scales.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China. Electronic address:
Myostatin (Mstn) negatively regulates muscle growth and Mstn deficiency induced "double-skeletal muscle" development in vertebrates, including tilapias. In this study, we performed a transcriptomic analysis of skeletal muscle from both wild-type and mstnb males to investigate the molecular mechanisms underlying skeletal muscle hypertrophy in mstnb mutants. We identified 4697 differentially expressed genes (DEGs), 113 differentially expressed long non-coding RNAs (DE lncRNAs), 211 differentially expressed circular RNAs (DE circRNAs), and 98 differentially expressed microRNAs (DE miRNAs).
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea.
Myogenic regulator factors (MRFs) are essential for skeletal muscle development in vertebrates, including fish. This study aimed to characterize the role of () in muscle development in Nile tilapia by cloning from muscle tissues. To explore the function of , CRISPR/Cas9 gene editing was employed.
View Article and Find Full Text PDFConserv Physiol
December 2024
U.S. Bureau of Reclamation Bay-Delta Office, 801 I St., Suite 140, Sacramento, CA 95814, USA.
Freshwater fishes are increasingly facing extinction. Some species will require conservation intervention such as habitat restoration and/or population supplementation through mass-release of hatchery fish. In California, USA, a number of conservation strategies are underway to increase abundance of the endangered Delta Smelt (); however, it is unclear how different estuarine conditions influence hatchery fish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!