Time-dependent hormetic effects of polypeptide antibiotics and two antibacterial agents contribute to time-dependent cross-phenomena of their binary mixtures.

Sci Total Environ

Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Electronic address:

Published: September 2023

Polypeptide antibiotics (PPAs), silver nanoparticles (plural) (AgNP) and quorum sensing inhibitors (QSIs) are considered to be the ideal antibiotic substitutes. Due to the great potential for the combined use of these antibacterial agents, it is necessary to evaluate their joint effects. In this study, the joint toxic actions for the binary mixtures of PPA + PPA, PPA + AgNP, and PPA + QSI were judged via the independent action (IA) model based on the individual and combined toxicity of test agents to the bioluminescence of Aliivibrio fischeri during 24 h. It was observed that the single agents (PPAs, AgNP, and QSI) and the binary mixtures (PPA + PPA, PPA + AgNP, and PPA + QSI) all triggered the time-dependent hormetic effects on the bioluminescence, where the maximum stimulatory rate, the median effective concentration, and the occurrence of hormesis varied with the increase of time. While bacitracin triggered the maximum stimulatory rate (266.98 % at 8 h) among the single agents, the mixture of capreomycin sulfate and 2-Pyrrolidinone induced the maximum stimulatory rate (262.21 % at 4 h) among the binary mixtures. The cross-phenomenon that the dose-response curve of mixture crossed the corresponding IA curve was observed in all treatments, which also varied with time, exhibiting that the joint toxic actions and corresponding intensities possessed dose- and time-dependent features. Furthermore, three kinds of binary mixtures resulted in three different variation tendencies for the time-dependent cross-phenomena. Mechanistic speculation indicated that test agents possessed the stimulatory modes of action (MOAs) at low-dose and inhibitory MOAs at high-dose to induce the hormetic effects, and the interplays between these MOAs varied with time to trigger the time-dependent cross-phenomenon. This study provides the reference data for the joint effects of PPAs and typical antibacterial agents, which will benefit the application of hormesis in the exploration of time-dependent cross-phenomenon and promote the future development of environmental risk assessment of pollutant mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164343DOI Listing

Publication Analysis

Top Keywords

binary mixtures
20
hormetic effects
12
antibacterial agents
12
maximum stimulatory
12
stimulatory rate
12
time-dependent hormetic
8
polypeptide antibiotics
8
time-dependent cross-phenomena
8
joint effects
8
joint toxic
8

Similar Publications

The physical separation of CH from CO on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for CH/CO separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique CH nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward CH molecules.

View Article and Find Full Text PDF

Environmentally tolerant multifunctional eutectogel for highly sensitive wearable sensors.

Mater Horiz

January 2025

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.

Article Synopsis
  • Flexible hydrogel sensors have limitations in sensitivity and freezing in low temperatures, hindering their applications.
  • A new multifunctional eutectogel is developed through photopolymerization, offering properties like high transparency, anti-freezing, and self-healing.
  • This eutectogel shows exceptional performance with a high gauge factor for strain sensitivity, making it promising for flexible electronics in cold conditions.
View Article and Find Full Text PDF

Simulating synergism or antagonism in binary mixtures with different modeling approaches - A case study focused on the effect of disinfection by-products on algal growth.

Sci Total Environ

January 2025

Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France.

This paper aims to test several modeling approaches for predicting toxicity of binary mixtures with potential synergy and antagonism. The approach based on the construction of isoboles was first tested and criticized. In contrast to conventional approaches, and in order to be mathematically consistent with the additivity assumptions, non-linear isoboles have been constructed.

View Article and Find Full Text PDF

In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs.

View Article and Find Full Text PDF

Nonideality in a binary solvent mixture is manifested through anomalies in various physical properties like viscosity, dielectric constant, polarity, freezing point, boiling point, and so forth. Sometimes, such anomalies become much more prominent, leading to a synergistic behavior, where the physical property of the mixture is way different from its bulk counterparts. Various alcohols/chlorinated methane binary solvent mixtures show such a synergistic behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!