C4S DB: Comprehensive Collection and Comparison for ChIP-Seq Database.

J Mol Biol

Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan; Department of In Silico, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan. Electronic address:

Published: July 2023

Combining multiple binding profiles, such as transcription factors and histone modifications, is a crucial step in revealing the functions of complex biological systems. Although a massive amount of chromatin immunoprecipitation followed by sequencing (ChIP-seq) data is available, existing ChIP-seq databases or repositories focus on individual experiments, and it is difficult to elucidate orchestrated regulation by DNA-binding elements. We developed the Comprehensive Collection and Comparison for ChIP-Seq Database (C4S DB) to provide researchers with insights into the combination of DNA binding elements based on quality-assessed public ChIP-seq data. The C4S DB is based on >16,000 human ChIP-seq experiments and provides two main web interfaces to discover the relationships between ChIP-seq data. "Gene browser" illustrates the landscape of distributions of binding elements around a specified gene, and "global similarity," a hierarchical clustering heatmap based on a similarity between two ChIP-seq experiments, gives an overview of genome-wide relations of regulatory elements. These functions promote the identification or evaluation of both gene-specific and genome-wide colocalization or mutually exclusive localization. Modern web technologies allow users to search for and aggregate large-scale experimental data through interactive web interfaces with quick responses. The C4S DB is available at https://c4s.site.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2023.168157DOI Listing

Publication Analysis

Top Keywords

chip-seq data
12
comprehensive collection
8
collection comparison
8
chip-seq
8
comparison chip-seq
8
chip-seq database
8
binding elements
8
chip-seq experiments
8
web interfaces
8
c4s
4

Similar Publications

Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.

View Article and Find Full Text PDF

edgeR is an R/Bioconductor software package for differential analyses of sequencing data in the form of read counts for genes or genomic features. Over the past 15 years, edgeR has been a popular choice for statistical analysis of data from sequencing technologies such as RNA-seq or ChIP-seq. edgeR pioneered the use of the negative binomial distribution to model read count data with replicates and the use of generalized linear models to analyze complex experimental designs.

View Article and Find Full Text PDF

Archived clinical formalin-fixed paraffin-embedded tissue (FFPE) is valuable for the study of tumor epigenetics. Although protocol of chromatin immunoprecipitation coupled with next generation sequencing (NGS) (ChIP-seq) using FFPE samples has been established, removal of interference signals from non-target cell components in the samples is still needed. In this study, the protocol of ChIP-seq with purified cells from FFPE lymphoid tissue of nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI) after fluorescence-activated cell sorting (FACS) was established and optimized.

View Article and Find Full Text PDF

Non-Canonical TERT Activity Initiates Osteogenesis in Calcific Aortic Valve Disease.

Circ Res

January 2025

Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).

Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.

View Article and Find Full Text PDF

Background: Conserved non-coding sequences (CNS) are islands of non-coding sequences conserved across species and play an important role in regulating the spatiotemporal expression of genes. Identification of CNS provides valuable information about potentially functional genomic elements, regulatory regions, and helps to gain insights into the genetic basis of crop agronomic traits.

Results: Here, we comprehensively analyze CNS in maize, by comparing the genomes of maize inbred line B73 (Zea mays ssp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!