Time management is an important aspect of human behaviour and cognition. Several brain regions are thought to be involved in motor timing and time estimation tasks. However, subcortical regions such as the basal nuclei and cerebellum seem to play a role in timing control. The aim of this study was to investigate the role of the cerebellum in temporal processing. For this purpose, we transitorily inhibited cerebellar activity by means of cathodal transcranial direct current stimulation (tDCS) and studied the effects of this inhibition on contingent negative variation (CNV) parameters elicited during a S1-S2 motor task in healthy subjects. Sixteen healthy subjects underwent a S1-S2 motor task prior to and after cathodal and sham cerebellar tDCS in separate sessions. The CNV task consisted of a duration discrimination task in which subjects had to determine whether the duration of a probe interval trial was shorter (800 ms), longer (1600 ms), or equal to the target interval of 1200 ms. A reduction in total CNV amplitude emerged only after cathodal tDCS for short and target interval trials, while no differences were detected for the long interval trial. Errors were significantly higher after cathodal tDCS than at baseline evaluation of short and target intervals. No reaction time differences were found for any time interval after the cathodal and sham sessions. These results point to a role of the cerebellum in time perception. In particular, the cerebellum seems to regulate temporal interval discrimination for second and sub-second ranges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2023.137301 | DOI Listing |
Cerebellum
January 2025
Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau, ICM, Paris, F-75013, France.
Cerebellar functional and structural connectivity are likely related to motor function after stroke. Less is known about motor recovery, which is defined as a gain of function between two time points, and about the involvement of the cerebellum. Fifteen patients who were hospitalized between 2018 and 2020 for a first cerebral ischemic event with persistent upper limb deficits were assessed by resting-state functional MRI (rsfMRI) and clinical motor score measurements at 3, 9 and 15 weeks after stroke.
View Article and Find Full Text PDFBackground: Default mode network (DMN) resting state connectivity has been correlated with heightened amyloid and tau - hallmarks of Alzheimer's Disease (AD). Tau is postulated to impact a meta-temporal area including DMN-associated regions like amygdala, entorhinal cortex, fusiform gyrus, parahippocampus, inferior temporal, and middle temporal gyrus. We recruited individuals with varying cognitive status to undergo resting state connectivity and imaging with two tau tracers (Flortaucipir and MK6240).
View Article and Find Full Text PDFBackground: Traditionally linked to essential physiological functions, the brainstem is now acknowledged for its role in cognition and dementia. Abnormal tau protein accumulation starts in the brainstem. Late life brainstem volume at baseline also predicts later Alzheimer's Disease conversion.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is multifactorial, thus multivariate analyses help untangle its effects. We employed multiple contrast MRI to reveal age-related brain changes in populations at risk for AD, due to APOE4 carriage. We assessed volume and microstructure changes using diffusion weighted imaging, and quantitative magnetic susceptibility maps (QSM) reflective primarily of cerebral iron metabolism.
View Article and Find Full Text PDFBackground: Studying brain reserve - the brain's resilience to age-related changes or damage - is crucial for understanding protective mechanisms against cognitive decline. The cerebellum may be a key region in brain reserve, but it has been historically understudied. This investigation delves into this critical area within the largest aging multi-cohort to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!