Cellulose nanofibrils (CNFs) have emerged as a potential alternative to synthetic polymers in packaging applications owing to their oxygen and grease barrier performance, as well as their strong mechanical properties. However, the performance of CNF films relies on the inherent characteristics of fibers, which undergo changes during the CNF isolation process. Understanding these variations in characteristics during CNF isolation is crucial for tailoring CNF film properties to achieve optimum performance in packaging applications. In this study, CNFs were isolated by endoglucanase-assisted mechanical ultra-refining. The alterations in the intrinsic characteristics of CNFs and their impact on CNF films were systematically investigated by considering the degree of defibrillation, enzyme loading, and reaction time through a design of experiments. Enzyme loading had a significant influence on the crystallinity index, crystallite size, surface area, and viscosity. Meanwhile, the degree of defibrillation greatly affected the aspect ratio, degree of polymerization, and particle size. CNF films prepared from CNFs isolated under two optimized scenarios (casting and coating applications) exhibited remarkable properties, including high thermal stability (approximately 300 °C), high tensile strength (104 - 113 MPa), excellent oil resistance (kit n°12), and low oxygen transmission rate (1.00 - 3.17 cc·m.day). Therefore, endoglucanase pretreatment can aid in obtaining CNFs with lower energy consumption, resulting in films that possess higher transmittance, superior barrier performance, and reduced surface wettability compared to control samples without enzymatic pretreatment and other unmodified CNF films reported in the literature, all while maintaining mechanical and thermal performance without significant loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.125057 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China. Electronic address:
Cellulose nanofibers (CNFs) have gained increasing attention due to their robust mechanical properties, favorable biocompatibility, and facile surface modification. However, green and recyclable CNF production remains challenging. Herein, a green, low-cost and room-temperature strategy was developed to exfoliate CNFs using deep eutectic solvents.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
This study compared the use of cellulose nanofibrils (CNF) and lignocellulose nanofibrils (LCNF) in different concentrations to reinforce the poly(vinyl alcohol) (PVA) matrix. Both nanofillers significantly improved the elastic modulus and tensile strength of PVA biocomposite films. The optimum concentration of CNF and LCNF was 6% relative to PVA, which improved the tensile strength of the final PVA biocomposite with CNF and LCNF by 53% and 39%, respectively, compared to the neat PVA film.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
Cellulose is attracting considerable attention in the field of flexible electronics due to its unique properties and environmental sustainability, particularly as a substrate for flexible devices. Flexible photodetectors are an integral part of cellulose-based devices and have become essential in optical communication, heart rate monitoring, and imaging systems. The performance and adaptability of these photodetectors depend significantly on the quality of the flexible substrates.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!