Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Machine learning (ML) was used to predict specific methane yields (SMY) with a dataset of 14 features from lignocellulosic biomass (LB) characteristics and operating conditions of completely mixed reactors under continuous feeding mode. The random forest (RF) model was best suited for predicting SMY with a coefficient of determination (R) of 0.85 and root mean square error (RMSE) of 0.06. Biomass compositions greatly influenced SMYs from LB, and cellulose prevailed over lignin and biomass ratio as the most important feature. Impact of LB to manure ratio was assessed to optimize biogas production with the RF model. Under typical organic loading rates (OLR), optimum LB to manure ratio of 1:1 was identified. Experimental results confirmed influential factors revealed by the RF model and provided the highest SMY of 79.2% of the predicted value. Successful applications of ML for anaerobic digestion modelling and optimization specifically for LB were revealed in this work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!