The uniformity and reproducibility of substrates highly determine the applicability of surface-enhanced Raman scattering (SERS). Production of them, however, remains a challenge. Herein, we report a template-based strategy for the strictly controllable and handily scalable preparation of a very uniform SERS substrate, Ag nanoparticles (AgNPs)/nanofilm, where the template used is a flexible, transparent, self-standing, defect-free and robust nanofilm. Importantly, the obtained AgNPs/nanofilm is self-adhesive to surfaces of different properties and morphologies, ensuring in-situ and at real-time SERS detection. The enhancement factor (EF) of the substrate for rhodamine 6G (R6G) could reach 5.8 × 10 with a detection limit (DL) of 1.0 × 10 mol L. Moreover, 500 bending tests and one-month storage showed no observable performance degradation, and up to 50.0 cm scaled-up preparation depicted negligible effect upon the structure and the sensing performance. The real-life applicability of AgNPs/nanofilm was demonstrated by the sensitive detection of tetramethylthiuram disulfide on cherry tomato and fentanyl in methanol with a routine handheld Raman spectrometer. This work thus provides a reliable strategy for large area wet-chemical preparation of high-quality SERS substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.05.133 | DOI Listing |
Commun Chem
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
Superoxide dismutase 1 (SOD1) aggregation is implicated in the development of Amyotrophic Lateral Sclerosis (ALS). Despite knowledge of the role of SOD1 aggregation, the mechanistic understanding remains elusive. Our investigation aimed to unravel the complex steps involved in SOD1 aggregation associated with ALS.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics and Astronomy, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States.
Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.
Slippery liquid-infused porous surfaces (SLIPSs) are a class of surface that offers low contact angle hysteresis and low tilt angle for water droplet shedding. This property also endows the surface with pinning-free evaporation, which in turn has been exploited for analyte concentration enrichment for Surface Enhanced Raman Spectroscopic applications and antibiofouling. Herein, we demonstrate a facile approach for creating SLIPS with low contact angle hysteresis and low tilt angle for water shedding by coating the equal-volume mixture of polydimethylsiloxane (PDMS) and silicone oil.
View Article and Find Full Text PDFIn this work, we investigated individual bacteria belonging to strains of the Beijing family with different drug sensitivity (sensitive, multi and extensive drug-resistant) by surface-enhanced Raman spectroscopy (SERS) in the fingerprint region. The latter is focused on the spectral bands, which correspond to a set of glutathione bands and DNA methylation patterns revealed due to 5-methylcytosine spectral biomarkers. It is shown that these spectral features can be correlated with drug sensitivity and DNA methylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!