A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differences in syntactic and semantic analysis based on machine learning algorithms in prodromal psychosis and normal adolescents. | LitMetric

AI Article Synopsis

  • - Schizophrenia primarily manifests through psychosis, marked by incoherent speech resulting from disrupted thought processes, with a critical prodromal phase in adolescence that requires early recognition to prevent worsening symptoms.
  • - Researchers utilized machine learning techniques to analyze speech patterns, aiming to distinguish between adolescents with prodromal psychosis and those without by examining syntactic and semantic features.
  • - This pioneering study conducted in Indonesia involved 70 participants and revealed significant differences in speech patterns, highlighting variations in coherence and the frequency of certain grammatical elements between the two adolescent groups.

Article Abstract

Schizophrenia has the main symptom of psychosis which is characterized by speech incoherence due to thought process disturbance. Before schizophrenia, there is a prodromal phase of psychosis in adolescence. Early recognition of this phase is important to prevent the development of symptoms into a severe mental disorder. Machine learning technology can be used to predict thought process disturbance through syntactic and semantic analysis of speech. This study aims to describe the differences in syntactic and semantic analysis in prodromal psychosis and normal adolescents. The research subjects consisted of 70 adolescents aged 14-19 years which were divided into 2 groups. Based on the results of the Prodromal Questionnaire-Brief (PQ-B) Indonesian version, the subjects were split into two groups: prodromal and normal. All participants were voice-recorded during interviews using an open-ended qualitative questionnaire. Syntactic and semantic analysis was carried out on all data which amounted to 1017 phrase segments and classified by machine learning. This is the first study in Indonesia to compare the analysis of syntactic and semantic aspects in prodromal psychosis and normal adolescent populations. There were significant differences in syntactic and semantic analysis between groups of adolescents with prodromal psychosis and normal adolescents at the minimum value of coherence and frequency of use of nouns, personal pronouns, subordinate conjunctions, adjectives, prepositions, and proper nouns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajp.2023.103633DOI Listing

Publication Analysis

Top Keywords

syntactic semantic
24
semantic analysis
20
prodromal psychosis
16
psychosis normal
16
differences syntactic
12
machine learning
12
normal adolescents
12
thought process
8
process disturbance
8
prodromal
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!