Conceptualizing the human drivers of low tree diversity in planted urban landscapes.

Ambio

Genus Landscape Architects, 520 42nd Street, Suite 400, Des Moines, IA, 50312, USA.

Published: September 2023

Despite the abundance of tree diversity in the natural world, and generally high tree species richness in urban areas, urban forests continue to be dominated by a limited number of species. As socio-ecological systems, urban forests are shaped by historical and current management efforts and decision-making across a wide range of human actors. Drawing on past research, we offer a conceptual framework for describing the complex interactions among tree producers and consumers as trees are selected, grown, specified, and planted in private and public urban areas. We illustrate how multiple layers of selection criteria filter down the entirety of potential local tree diversity to a handful of commonly used and accepted tree species. We detail the actors and decision-makers who impact tree composition and diversity across several land types. Finally, we identify research, education, and outreach needs as they relate to creating more diverse and resilient urban forest ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407000PMC
http://dx.doi.org/10.1007/s13280-023-01876-7DOI Listing

Publication Analysis

Top Keywords

tree diversity
12
tree species
8
urban areas
8
urban forests
8
tree
7
urban
6
conceptualizing human
4
human drivers
4
drivers low
4
low tree
4

Similar Publications

Dry evergreen Afromontane forests are severely threatened due to the expansion of agriculture and overgrazing by livestock. The objective of this study was to investigate the composition of woody species, structure, regeneration status and plant communities in Seqela forest, as well as the relationship between plant community types and environmental variables. Systematic sampling was used to collect vegetation and environmental data from 52 (20 m x 20 m) (400 m2) plots.

View Article and Find Full Text PDF

The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization.

Plant Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity.

View Article and Find Full Text PDF

Background: Hand, foot, and mouth disease (HFMD) is a prevalent infectious condition in children. This study aimed to assess the regulatory effects of Re-Du-Ning on the intestinal microflora of pediatric patients with HFMD.

Methods: Fecal samples were collected from children affected by HFMD, who were diagnosed at the traditional Chinese medicine pediatrics outpatient and emergency departments of Liuzhou Women and Children's Healthcare Hospital, as well as from healthy children undergoing physical examinations at the same hospital during the same period.

View Article and Find Full Text PDF

Thermal ecology of the Mexican Garter Snake (): temporal and spatial variations.

PeerJ

January 2025

Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.

Heterogeneous environments provide different daily and seasonal thermal conditions for snakes, resulting in temporal and spatial variations in body temperature (Tb). This study analyzes the Tb of in the forest and grassland of a Mexican locality through daily and seasonal profiling. The patterns were obtained from seminatural enclosures in the field with a point sampling strategy to analyze temporal and spatial variations in Tb.

View Article and Find Full Text PDF

From forests to farming: identification of photosynthetic limitations in breadfruit across diverse environments.

Tree Physiol

January 2025

Tropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3190 Maile Way, Honolulu, Hawai'i, USA.

Breadfruit (Artocarpus altilis) is a prolific tropical tree producing highly nutritious and voluminous carbohydrate-rich fruits. Already recognized as an underutilized crop, breadfruit could ameliorate food insecurity and protect against climate-related productivity shocks in undernourished equatorial regions. However, a lack of fundamental knowledge impedes widespread agricultural adoption, from modern agroforestry to plantation schemes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!