Thioflavin t (THT) is a well-known molecular rotor extensively used to detect amyloid-like structures. But THT shows very weak emission in water. In this article, we have found that THT shows very strong emission in the presence of cellulose nanocrystals (CNCs). Steady-state and time-resolved emission techniques have been used to study the strong emission of THT in aqueous CNC dispersion. The time-resolved study showed that in the presence of CNCs, the lifetime increased by ∼1500 fold compared to pure water (<1 ps). To know the nature of interaction and also the reason for this increase in emission zeta potential, stimuli-dependent and temperature-dependent studies have been carried out. These studies proposed that electrostatic interaction is the main factor for this binding of THT with CNCs. Further, the addition of another anionic lipophilic dye, merocyanine 540 (MC540), with CNCs-THT in both BSA protein (CIE: 0.33, 0.32) and TX-100 micellar (4.5 mM) (CIE: 0.32, 0.30) solutions produced excellent white light emission. Lifetime decay and absorption studies proposed a possible fluorescence resonance energy transfer mechanism in this generation of white light emission.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c00401DOI Listing

Publication Analysis

Top Keywords

strong emission
12
molecular rotor
8
emission
5
insights strong
4
emission enhancement
4
enhancement molecular
4
rotor thioflavin
4
thioflavin aqueous
4
aqueous cellulose
4
cellulose nanocrystal
4

Similar Publications

Background: Lung cancer is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) comprising 85% of cases. Due to the lack of early clinical signs, metastasis often occurs before diagnosis, impacting treatment and prognosis. Cardiovascular disease (CVD) is a common comorbidity in lung cancer patients, with shared risk factors exacerbating outcomes.

View Article and Find Full Text PDF

Machine learning-based prognostic modeling in gallbladder cancer using clinical data and pre-treatment [F]-FDG-PET-radiomic features.

Jpn J Radiol

December 2024

Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.

Objectives: This study evaluates the effectiveness of machine learning (ML) models that incorporate clinical and 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-radiomic features for predicting outcomes in gallbladder cancer patients.

Materials And Methods: The study analyzed 52 gallbladder cancer patients who underwent pre-treatment [F]-FDG-PET/CT scans between January 2011 and December 2021. Twenty-seven patients were assigned to the training cohort between January 2011 and January 2018, and the data randomly split into training (70%) and validation (30%) sets.

View Article and Find Full Text PDF

Purpose: Nanoparticles are highly efficient vectors for ferrying contrast agents across cell membranes, enabling ultra-sensitive in vivo tracking of single cells with positron emission tomography (PET). However, this approach must be fully characterized and understood before it can be reliably implemented for routine applications.

Methods: We developed a Langmuir adsorption model that accurately describes the process of labeling mesoporous silica nanoparticles (MSNP) with Ga.

View Article and Find Full Text PDF

Background/objectives: Calculating the radiation dose from CT in F-PET/CT examinations poses a significant challenge. The objective of this study is to develop a deep learning-based automated program that standardizes the measurement of radiation doses.

Methods: The torso CT was segmented into six distinct regions using TotalSegmentator.

View Article and Find Full Text PDF

2D Flower-like CdS@Co/Mo-MOF as Co-Reaction Accelerator of g-CN-Based Electrochemiluminescence Sensor for Chlorpromazine Hydrochloride.

Biosensors (Basel)

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China.

In this study, we have proposed an electrochemiluminescence (ECL) signal amplification system which is based on two-dimensional (2D) flower-like CdS@Co/Mo-MOF composites as a co-reaction accelerator of the g-CN/SO system for ultrasensitive detection of chlorpromazine hydrochloride (CPH). Specifically, the 2D flower-like Co/Mo-MOF with mesoporous alleviated the aggregation of CdS NPs while simultaneously fostering reactant-active site contact and improving the reactant-product transport rate. This allowed the material to act as a novel co-reaction accelerator, speeding up the transformation of the SO into SO and enhancing the cathodic ECL emission of g-CN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!