To provide prominent accessibility of fishmeal to the European population, the currently available, time- and cost-extensive feeding trials, which evaluate fish feed, should be replaced. The current paper reports on the development of a novel 3D culture platform, mimicking the microenvironment of the intestinal mucosa in vitro. The key requirements of the model include sufficient permeability for nutrients and medium-size marker molecules (equilibrium within 24 h), suitable mechanical properties (G' < 10 kPa), and close morphological similarity to the intestinal architecture. To enable processability with light-based 3D printing, a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink is developed and combined with Tween 20 as porogen to ensure sufficient permeability. To assess the permeability properties of the hydrogels, a static diffusion setup is utilized, indicating that the hydrogel constructs are permeable for a medium size marker molecule (FITC-dextran 4 kg mol ). Moreover, the mechanical evaluation through rheology evidence a physiologically relevant scaffold stiffness (G' = 4.83 ± 0.78 kPa). Digital light processing-based 3D printing of porogen-containing hydrogels results in the creation of constructs exhibiting a physiologically relevant microarchitecture as evidenced through cryo-scanning electron microscopy. Finally, the combination of the scaffolds with a novel rainbow trout (Oncorhynchus mykiss) intestinal epithelial cell line (RTdi-MI) evidence scaffold biocompatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202300016 | DOI Listing |
PLoS One
January 2025
Department of Clinical Sciences, Health Economics Unit, Lund University, Lund, Sweden.
Background: In the last three decades, the increasing trend in female employment in Bangladesh has been critically analyzed from a socioeconomic point of view; however, its impact on infant and young child feeding (IYCF) practices has yet to be systematically reviewed. The aim of this systematic review and meta-analysis is to investigate the association between these variables.
Methods: A systematic literature search was conducted in PubMed, Medline, Web of Science, Embase, CINAHL, and Google Scholar to retrieve relevant records with no restriction of publication period.
PLoS One
January 2025
CFD Research Corporation, Huntsville, AL, United States of America.
Purpose: To assess physiological metrics during the use of a commercially available bilateral active ankle exoskeleton during a challenging military-relevant task and if use of the exoskeleton during this task influences: metabolic load, physiological measures or rate of perceived exertion.
Methods: Nine healthy volunteers (5M, 4F) completed this randomized cross-over design trial, with a baseline visit and two randomized test sessions (with/without the exoskeleton). Variables included impact on time to exhaustion during walking on a treadmill at varying speeds and gradients (0-15%) at 26.
Curr Eye Res
January 2025
Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
Purpose: This study aims to conduct a mini review of published literature concerning the role of exosomes in the field of ophthalmology, with a specific focus on Age-Related Macular Degeneration (AMD).
Methods: In this study, a comprehensive search was conducted using PubMed and Google Scholar to identify relevant publications. Additionally, trials submitted to clinicaltrials.
JAMA Netw Open
January 2025
Liggins Institute, University of Auckland, Auckland, New Zealand.
Importance: Neonatal protein intake following very preterm birth has long lasting effects on brain development. However, it is uncertain whether these effects are associated with improved or impaired brain maturation.
Objective: To assess the association of neonatal protein intake following very preterm birth with brain structure at 7 years of age.
ACS Biomater Sci Eng
January 2025
Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China.
Vascular calcification severely disrupts cardiovascular hemodynamics, leading to high rates of morbidity and mortality. Despite their clinical impact, the development of effective treatments remains limited, underscoring an urgent need for efficient and reliable drug screening methods. Vascular smooth muscle cells (VSMCs) are known to play a central role in driving the calcification process, undergoing an osteogenic transition in response to pathological conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!