Fat graft is widely used in plastic and reconstructive surgery. The size of the injectable product, the unpredictable fat resorption rates, and subsequent adverse effects make it tricky to inject untreated fat into the dermal layer. Mechanical emulsification of fat tissue, which Tonnard introduced, solves these problems, and the product obtained was called nanofat. Nanofat is widely used in clinical and aesthetic settings to treat facial compartments, hypertrophic and atrophic scars, wrinkle attenuation, skin rejuvenation, and alopecia. Several studies demonstrate that the tissue regeneration effects of nanofat are attributable to its rich content of adipose-derived stem cells. This study aimed to characterize product by investigating morphology, cellular yield, adipose-derived stem cell (ASC) proliferation rate and clonogenic capability, immunophenotyping, and differential potential. The percentage of SEEA3 and CD105 expression was also analyzed to establish the presence of multilineage-differentiating stress-enduring (MUSE) cell. Our results showed that the kit could isolate 3.74 × 10 ± 1.31 × 10 proliferative nucleated cells for milliliter of the treated fat. Nanofat-derived ASC can grow in colonies and show high differentiation capacity into adipocytes, osteocytes, and chondrocytes. Moreover, immunophenotyping analysis revealed the expression of MUSE cell antigen, making this nanofat enriched of pluripotent stem cell, increasing its potential in regenerative medicine. The unique characteristics of MUSE cells give a simple, feasible strategy for treating a variety of diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10226300PMC
http://dx.doi.org/10.1177/09636897231175968DOI Listing

Publication Analysis

Top Keywords

adipose-derived stem
12
stem cell
12
muse cell
8
stem
5
nanofat
5
cell
5
fat
5
highly pluripotent
4
pluripotent adipose-derived
4
stem cell-enriched
4

Similar Publications

Background: The use of fat grafting has expanded to include cell and tissue regeneration, necessitating investigations to ensure the viability of stromal and adipose-derived mesenchymal stem cells (ASCs) within the transferred fat parcels. This study explored the impact of harvesting technique and centrifugation on the viability of stromal cells and ASCs in lipoaspirate.

Methods: Fat was harvested from patients undergoing fat grafting using 2 types of liposuction cannula: (A) a 3-mm blunt tip cannula with 3 smooth holes and (B) a 2.

View Article and Find Full Text PDF

Fat Grafting With Lymphedema Fat: From Trash to Treasure?

Plast Reconstr Surg Glob Open

January 2025

From the Department of Plastic and General Surgery, Turku University Hospital, Turku, Finland.

Liposuction is a common procedure for patients with lymphedema with nonpitting adipose tissue hypertrophy. However, routinely, the lipoaspirate is discarded. Experimental studies have shown that adipose-derived stem cells in fat may enhance the regenerative and lymphangiogenic effects of the fat.

View Article and Find Full Text PDF

The endometrium, the inner lining of the uterus, assumes a crucial role in the female reproductive system. Disorders and injuries impacting the endometrium can lead to profound consequences, including infertility and compromised women's overall health. Recent advancements in stem cell research have opened new possibilities for the treatment and repair of endometrial issues.

View Article and Find Full Text PDF

Human adipose-derived multipotent stromal cells enriched with IL-10 modRNA improve diabetic wound healing: Trigger the macrophage phenotype shift.

Bioeng Transl Med

January 2025

Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Shanghai China.

Diabetic wounds present a significant challenge in regenerative medicine due to impaired healing, characterized by prolonged inflammation and deficient tissue repair, primarily caused by a skewed pro-inflammatory macrophage phenotype. This study investigates the therapeutic potential of interleukin-10 (IL-10) chemically modified mRNA (modRNA)-enriched human adipose-derived multipotent stromal cells (hADSCs) in a well-established murine model of diabetic wounds. The modRNAs used in this study were chemically modified using N1-methylpseudouridine-5'-triphosphate (m1Ψ) by substituting uridine-5-triphosphate.

View Article and Find Full Text PDF

Chemoresistance in Pancreatic Cancer: The Role of Adipose-Derived Mesenchymal Stem Cells and Key Resistance Genes.

Int J Mol Sci

January 2025

Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.

Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!