Cytokinin activity - transport and homeostasis at the whole plant, cell, and subcellular levels.

New Phytol

School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.

Published: September 2023

Cytokinins (CKs) are important plant hormones that regulate a variety of biological processes implicated in plant development and stress responses. Here, we summarize the most recent advances in discovering and characterizing the membrane transporters involved in long- and short-distance translocation of CKs and their significance in CK signal activity. We highlight the discovery of PUP7 and PUP21 tonoplast-localized transporters and propose potential mechanisms for CK subcellular homeostasis. Finally, we discuss the importance of subcellular hormone transport in light of the localization of histidine kinase receptors of CKs at the endoplasmic reticulum and plasma membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.19001DOI Listing

Publication Analysis

Top Keywords

cytokinin activity
4
activity transport
4
transport homeostasis
4
homeostasis plant
4
plant cell
4
cell subcellular
4
subcellular levels
4
levels cytokinins
4
cytokinins cks
4
cks plant
4

Similar Publications

Zeatin Elicits Premature Erythrocyte Senescence Through Calcium and Oxidative Stress Mediated by the NOS/PKC/CK1α Signaling Axis.

Dose Response

January 2025

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.

Cytokinins are plant hormones that regulate cell growth and differentiation. In particular, zeatin (ZTN) delays cellular senescence of human fibroblasts and keratinocytes and exhibits anticancer activity. Chemotherapy-induced anemia is a major side effect of anticancer therapy secondary to premature senescence of red blood cells (RBCs).

View Article and Find Full Text PDF

Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus).

BMC Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.

Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.

View Article and Find Full Text PDF

The lily is a globally popular cut flower, and managing dormancy in lily bulblets is essential for continuous, year-round production. While nitric oxide (NO) has been shown to influence seed dormancy and germination, its role in dormancy release in lilies was previously unconfirmed. In this study, we investigated the effects of NO on dormancy release in lily bulblets using SNP and c-PTIO.

View Article and Find Full Text PDF

RITA Temporary Immersion System (TIS) for Biomass Growth Improvement and Ex Situ Conservation of Erben & Raimondo.

Plants (Basel)

December 2024

Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy.

Erben & Raimondo is a rare and endangered taxon, endemic to a limited area on Mount Pizzuta in northwestern Sicily, Italy. Its population is significantly threatened by anthropogenic activities, including fires, overgrazing, and habitat alterations. Temporary immersion systems (TISs) have proven effective for large-scale propagation in various protected species, offering potential for ex situ conservation and population reinforcement of .

View Article and Find Full Text PDF

GmbZIP4a/b Positively Regulate Nodule Number by Affecting Cytokinin Biosynthesis in .

Int J Mol Sci

December 2024

Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.

Legumes have the capability to form nodules that facilitate symbiotic nitrogen fixation (SNF) with rhizobia. Given the substantial energy consumption during the process of SNF, legumes need to optimize nodule number in response to everchanging environmental scenarios. The TGACG BINDING FACTOR1/4 (TGA1/4) are key players in the basal immune response of plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!