Urushiol-Based Benzoxazine Containing Sulfobetaine Groups for Sustainable Marine Antifouling Applications.

Polymers (Basel)

Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China.

Published: May 2023

Benzoxazine resins are new thermosetting resins with excellent thermal stability, mechanical properties, and a flexible molecular design, demonstrating promise for applications in marine antifouling coatings. However, designing a multifunctional green benzoxazine resin-derived antifouling coating that combines resistance to biological protein adhesion, a high antibacterial rate, and low algal adhesion is still challenging. In this study, a high-performance coating with a low environmental impact was synthesized using urushiol-based benzoxazine containing tertiary amines as the precursor, and a sulfobetaine moiety into the benzoxazine group was introduced. This sulfobetaine-functionalized urushiol-based polybenzoxazine coating (poly(U-ea/sb)) was capable of clearly killing marine biofouling bacteria adhered to the coating surface and significantly resisting protein attachment. poly(U-ea/sb) exhibited an antibacterial rate of 99.99% against common Gram negative bacteria (e.g., and ) and Gram positive bacteria (e.g., and sp.), with >99% its algal inhibition activity, and it effectively prevented microbial adherence. Here, a dual-function crosslinkable zwitterionic polymer, which used an "offensive-defensive" tactic to improve the antifouling characteristics of the coating was presented. This simple, economic, and feasible strategy provides new ideas for the development of green marine antifouling coating materials with excellent performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221719PMC
http://dx.doi.org/10.3390/polym15102383DOI Listing

Publication Analysis

Top Keywords

marine antifouling
12
urushiol-based benzoxazine
8
antifouling coating
8
antibacterial rate
8
coating
6
antifouling
5
benzoxazine sulfobetaine
4
sulfobetaine groups
4
groups sustainable
4
marine
4

Similar Publications

Strategy for Fabricating Degradable Low-Surface-Energy Cross-Linked Networks with Excellent Anti-Fouling Properties.

ACS Appl Mater Interfaces

January 2025

National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China.

Marine biofouling negatively impacts marine industries and ship navigation. However, current coatings are based on a single antifouling mechanism, which is insufficient to cope with the complex and ever-changing marine environment. Herein, multifunctional antifouling coatings were developed using a material system containing perfluoropolyether and caprolactone chains.

View Article and Find Full Text PDF
Article Synopsis
  • Lubricant-mediated surfaces face challenges like lubricant loss and poor clarity for antifouling purposes.
  • Inspired by globefish skin, slippery Liquid-Like Surfaces (LLSs) use cyclodextrin-eugenol complexes and flexible silicone chains to effectively kill attached organisms and prevent fouling.
  • LLSs show excellent antifouling and mechanical properties while maintaining transparency in various water environments, lasting up to 90 days on coated lenses in seawater.
View Article and Find Full Text PDF

Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of Crassostrea gigas oysters with CUR would improve their antioxidant capacity, development, and resilience to stress.

View Article and Find Full Text PDF

Multifunctional coatings have great application value in the protection of Marine equipment, ships and ship facilities, but they still suffer from the disadvantages of high preparation cost and complicated synthesis methods. Herein, employing a simple method to synthesize black carbon nitride (BCN), as the filler in polydimethylsiloxane (PDMS) to construct BCN/PDMS composite coating with a multifunctional anti-corrosion/antifouling coating capable of photothermal self-healing property. Experimental results exhibit that the BCN/PDMS coating can still possesses excellent corrosion resistance after 28 d of immersion in the simulated seawater, and the impedance modulus still manages to reach 6.

View Article and Find Full Text PDF

The slippery liquid-infused porous surfaces (SLIPS) have recently attracted significant interest in marine antifouling and corrosion protection. Nevertheless, the insufficient durability and corrosion resistance of SLIPS considerably affect their application potential. In this work, a preparation strategy for ultradurable slippery organic coating was proposed to combat biofouling and corrosion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!