Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
PET knitted fabric was melted and cooled by hot pressing at 250 °C to obtain a compacted sheet. Only white PET fabric (WF_PET) was used to study the recycling process by compression and grinding to powder and then melt spinning at different take-up speeds compared to PET bottle grade (BO_PET). PET knitted fabric had good fiber formability and was better suited for melt spinning of recycled PET (-PET) fibers than the bottle grade. Thermal and mechanical properties of -PET fibers improved in terms of crystallinity and tensile strength with increasing take-up speed (500 to 1500 m/min). Fading and color changes from the original fabric were relatively small compared with PET bottle grade. Results indicated that fiber structure and properties can be used as a guideline for improving and developing -PET fibers from textile waste.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224041 | PMC |
http://dx.doi.org/10.3390/polym15102330 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!