Materials and manufacturing technologies are necessary for tissue engineering and developing temporary artificial extracellular matrices. In this study, scaffolds were fabricated from freshly synthesized titanate (NaTiO) and its precursor titanium dioxide and their properties were investigated. The scaffolds with improved properties were then mixed with gelatin to form a scaffold material using the freeze-drying technique. To determine the optimal composition for the compression test of the nanocomposite scaffold, a mixture design with three factors of gelatin, titanate, and deionized water was used. Then, the scaffold microstructures were examined by scanning electron microscopy (SEM) to determine the porosity of the nanocomposite scaffolds. The scaffolds were fabricated as a nanocomposite and determined their compressive modulus values. The results showed that the porosity of the gelatin/NaTiO nanocomposite scaffolds ranged from 67% to 85%. When the mixing ratio was 100:0, the degree of swelling was 22.98%. The highest swelling ratio of 85.43% was obtained when the freeze-drying technique was applied to the mixture of gelatin and NaTiO with a mixing ratio of 80:20. The specimens formed (gelatin:titanate = 80:20) exhibited a compressive modulus of 30.57 kPa. The sample with a composition of 15.10% gelatin, 2% NaTiO, and 82.9% DI water, processed by the mixture design technique, showed the highest yield of 30.57 kPa in the compression test.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221540PMC
http://dx.doi.org/10.3390/polym15102322DOI Listing

Publication Analysis

Top Keywords

nanocomposite scaffolds
12
gelatin/natio nanocomposite
8
tissue engineering
8
scaffolds fabricated
8
freeze-drying technique
8
compression test
8
mixture design
8
compressive modulus
8
mixing ratio
8
gelatin natio
8

Similar Publications

Solution Blow Spinning: An Emerging Nanomaterials-Based Wound-Care Technology.

J Biomed Mater Res B Appl Biomater

February 2025

Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

Application of one-dimensional nanofibers have witnessed exponential growth over the past few decades and are still emerging with their excellent physicochemical and electrical properties. The driving force behind this intriguing transition lies in their unique high surface-to-volume ratio, ubiquitous nanodomains, improved tensile strength, and flexibility to incorporate deliberate functionalities required for specific and advanced applications. Besides numerous benefits, nanomaterials may adversely interact with biological tissues and potentially be cytotoxic and carcinogenic.

View Article and Find Full Text PDF

In recent years, attempts were made to develop biomaterials using synthetic and natural polymers to induce osteogenesis of human mesenchymal stem cells (hMSCs). Poly(ε-caprolactone) (PCL) is one of the few synthetic polymers with the potential to differentiate hMSCs to bone. However, its potential is limited, attributed to its low strength; its fast crystallization rate also compromises its dimensional stability.

View Article and Find Full Text PDF

The development of an effective and rapid method for healing the skin is of crucial importance. In this study, we prepared a porous scaffold made of polycaprolactone (PCL) and carbon quantum dots (CQDs), Fe, and Chitosan (Cs) as the scaffold core to cover the skin. Then evaluated antibacterial, biocompatibility, and wound healing properties as well as the expression of genes effective in wound healing.

View Article and Find Full Text PDF

The future of cardiac repair: a review on cell-free nanotherapies for regenerative myocardial infarction.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, P.O. Box 21521, Alexandria, Egypt.

Cardiovascular diseases as myocardial infarction (MI) represent a major cause for morbidity and mortality worldwide. Even though, patients who survive MI are susceptible to high risk of heart failure. This is mainly attributed to the major loss of cardiomyocytes and limited regenerative potential of myocardium.

View Article and Find Full Text PDF

Unveiling the multifaceted potential of amyloid fibrils: from pathogenic myths to biotechnological marvels.

Biophys Rev

December 2024

Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, 201313 Noida, India.

Amyloid fibrils, historically stigmatized due to their association with diseases like Alzheimer's and Parkinson's, are now recognized as a distinct class of functional proteins with extraordinary potential. These highly ordered, cross-β-sheet protein aggregates are found across all domains of life, playing crucial physiological roles. In bacteria, functional amyloids like curli fibers are essential for surface adhesion, biofilm formation, and viral DNA packaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!