Anti-Ballistic Performance of PPTA/UHMWPE Laminates.

Polymers (Basel)

Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA.

Published: May 2023

Poly(-phenylene terephthalamide) (PPTA) and ultra-high-molecular-weight polyethylene (UHMWPE) are high-performance polymer materials largely used for body armor applications. Although composite structures from a combination of PPTA and UHMWPE have been created and described in the literature, the manufacture of layered composites from PPTA fabrics and UHMWPE films with UHMWPE film as an adhesive layer has not been reported. Such a new design can provide the obvious advantage of simple manufacturing technology. In this study, for the first time, we prepared PPTA fabrics/UHMWPE films laminate panels using plasma treatment and hot-pressing and examined their ballistic performance. Ballistic testing results indicated that samples with moderate interlayer adhesion between PPTA and UHMWPE layers exhibited enhanced performance. A further increase in interlayer adhesion showed a reverse effect. This finding implies that optimization of interface adhesion is essential to achieve maximum impact energy absorption through the delamination process. In addition, it was found that the stacking sequence of the PPTA and UHMWPE layers affected ballistic performance. Samples with PPTA as the outermost layer performed better than those with UHMWPE as the outermost layer. Furthermore, microscopy of the tested laminate samples showed that PPTA fibers exhibited shear cutting failure on the entrance side and tensile failure on the exit side of the panel. UHMWPE films exhibited brittle failure and thermal damage at high compression strain rate on the entrance side and tensile fracture on the exit side. For the first time, findings from this study reported in-field bullet testing results of PPTA/UHMWPE composite panels, which can provide important insights for designing, fabricating, and failure analysis of such composite structures for body armors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224376PMC
http://dx.doi.org/10.3390/polym15102281DOI Listing

Publication Analysis

Top Keywords

ppta uhmwpe
12
ppta
8
uhmwpe
8
composite structures
8
uhmwpe films
8
ballistic performance
8
interlayer adhesion
8
uhmwpe layers
8
samples ppta
8
outermost layer
8

Similar Publications

Anti-Ballistic Performance of PPTA/UHMWPE Laminates.

Polymers (Basel)

May 2023

Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA.

Poly(-phenylene terephthalamide) (PPTA) and ultra-high-molecular-weight polyethylene (UHMWPE) are high-performance polymer materials largely used for body armor applications. Although composite structures from a combination of PPTA and UHMWPE have been created and described in the literature, the manufacture of layered composites from PPTA fabrics and UHMWPE films with UHMWPE film as an adhesive layer has not been reported. Such a new design can provide the obvious advantage of simple manufacturing technology.

View Article and Find Full Text PDF

Poly(p-phenylene terephthalamide) (PPTA) is a high-performance polymer that has been utilized in a range of applications. Although PPTA fibers are widely used in various composite materials, laminar structures consisting of PPTA and ultra-high-molecular-weight polyethylene (UHMWPE), are less reported. The difficulty in making such composite structures is in part due to the weakness of the interface formed between these two polymers.

View Article and Find Full Text PDF

High-performance fibers made of poly-(p-phenylene terephthalamide) (PPTA) with high stiffness and high strength are widely used in body armor for protection due to their high degree of molecular chain alignment along the fiber direction. However, their poor mechanical properties in the transverse direction and low surface friction are undesirable for applications requiring resistance to ballistic impact. Here we provide a simple yet effective surface engineering strategy to improve both the transverse mechanical properties and the tribological property by coating PPTA fibers with ultra-high molecular weight polyethylene (UHMWPE) embedded with silica nanoparticles.

View Article and Find Full Text PDF

Traditionally, soft body armor has been made from poly(p-phenylene terephthalamide) (PPTA) and ultra-high molecular weight polyethylene. However, to diversify the fiber choices in the United States body armor market, copolymer fibers based on the combination of 5-amino-2-(p-aminophenyl) benzimidazole (PBIA) and the more conventional PPTA were introduced. Little is known regarding the long-term stability of these fibers, but as condensation polymers, they are expected to have potential sensitivity to moisture and humidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!