In this study, six conjugated oligomers containing D-A structures were synthesized using the Stille coupling reaction and named PHZ1-PHZ6. All the oligomers utilized demonstrated excellent solubilities in common solvents and notable color variations in the domain of electrochromic characteristics. By designing and synthesizing two electron-donating groups modified with alkyl side chains and a common aromatic electron-donating group, as well as cross-binding them with two electron-withdrawing groups with lower molecular weights, the six oligomers presented good color-rendering efficiencies, among which PHZ4 presented the best color-rendering efficiency (283 cm·C). The products also demonstrated excellent electrochemical switching-response times. PHZ5 presented the fastest coloring time (0.7 s), PHZ3 and PHZ6 presented the fastest bleaching times (2.1 s). Following 400 s of cycling activity, all the oligomers under study showed good working stabilities. Moreover, three kinds of photodetectors based on conducting oligomers were prepared, and the experimental results show that the three photodetectors have better specific detection performances and gains. These characteristics indicate that oligomers containing D-A structures are suitable for use as electrochromic and photodetector materials in the research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221385 | PMC |
http://dx.doi.org/10.3390/polym15102274 | DOI Listing |
Light Sci Appl
September 2024
School of Physics, Beihang University, Beijing, 100191, China.
Miniaturized on-chip spectrometers with small footprints, lightweight, and low cost are in great demand for portable optical sensing, lab-on-chip systems, and so on. Such miniaturized spectrometers are usually based on engineered spectral response units and then reconstruct unknown spectra with algorithms. However, due to the limited footprints of computational on-chip spectrometers, the recovered spectral resolution is limited by the number of integrated spectral response units/filters.
View Article and Find Full Text PDFAdv Mater
September 2024
Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized.
View Article and Find Full Text PDFSmall
August 2024
The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
Perception of UV radiation has important applications in medical health, industrial production, electronic communication, etc. In numerous application scenarios, there is an increasing demand for the intuitive and low-cost detection of UV radiation through colorimetric visual behavior, as well as the efficient and multi-functional utilization of UV radiation. However, photodetectors based on photoconductive modes or photosensitive colorimetric materials are not conducive to portable or multi-scene applications owing to their complex and expensive photosensitive components, potential photobleaching, and single-stimulus response behavior.
View Article and Find Full Text PDFArXiv
November 2023
Department of Physics, 366 Physics South, University of California, Berkeley, CA 94720.
Electrochromic optical recording (ECORE) is a label-free method that utilizes electrochromism to optically detect electrical signals in biological cells with a high signal-to-noise ratio and is suitable for long-term recording. However, ECORE usually requires a large and intricate optical setup, making it relatively difficult to transport and to study specimens on a large scale. Here, we present a Compact ECORE (CECORE) apparatus that drastically reduces the spatial footprint and complexity of the ECORE setup whilst maintaining high sensitivity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
A brain-like neuromorphic computing system, as compared with traditional Von Neumann architecture, has broad application prospects in the fields of emerging artificial intelligence (AI) due to its high fault tolerance, excellent plasticity, and parallel computing capability. A neuromorphic visuosensory and memory system, an important branch of neuromorphic computing, is the basis for AI to perceive, process, and memorize optical information, now still suffering from nonlinearity of synaptic weight, crosstalk issues, and integration incompatibility, hindering the high-level training and inference accuracy. In this work, we propose a new optoelectronic neuromorphic architecture by integrating an electrochromic device and a perovskite photodetector.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!