The solid-state landscape of carbamazepine during its dehydration was explored using Raman spectroscopy in the low- (-300 to -15, 15 to 300) and mid- (300 to 1800 cm) frequency spectral regions. Carbamazepine dihydrate and forms I, III, and IV were also characterized using density functional theory with periodic boundary conditions and showed good agreement with experimental Raman spectra with mean average deviations less than 10 cm. The dehydration of carbamazepine dihydrate was examined under different temperatures (40, 45, 50, 55, and 60 °C). Principal component analysis and multivariate curve resolution were used to explore the transformation pathways of different solid-state forms during the dehydration of carbamazepine dihydrate. The low-frequency Raman domain was able to detect the rapid growth and subsequent decline of carbamazepine form IV, which was not as effectively observed by mid-frequency Raman spectroscopy. These results showcased the potential benefits of low-frequency Raman spectroscopy for pharmaceutical process monitoring and control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222055 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15051526 | DOI Listing |
J Biophotonics
January 2025
Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia.
Skin homeostasis is strongly dependent on its hydration levels, making skin water content measurement vital across various fields, including medicine, cosmetology, and sports science. Noninvasive diagnostic techniques are particularly relevant for clinical applications due to their minimal risk of side effects. A range of optical methods have been developed for this purpose, each with unique physical principles, advantages, and limitations.
View Article and Find Full Text PDFPharmaceutics
January 2025
Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Plasma and Radiation Physics, National Institute for Laser, 077125 Magurele, Romania.
CAM/CAD composites are widely used as dental restoration materials due to their resistivity to wear. The purpose of this study was to determine the effect of human gingival fibroblast cells on three different computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid materials with resin-based composites (RBC) and to assess their stability following cell growth. The CAM/CAD dental materials were investigated in different conditions as follows: (i) cells (human gingival fibroblasts, HFIB-Gs) incubated over the material for each sample, denoted as A; (ii) reference, the raw material, denoted as B; and (iii) materials incubated in DMEM medium, denoted as C.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
The problem of antibiotic abuse and drug resistance is becoming increasingly serious. In recent years, polydopamine (PDA) nanoparticles have been recognized as a potential antimicrobial material for photothermal therapy (PTT) due to their excellent photothermal conversion efficiency and unique antimicrobial ability. PDA is capable of rapidly converting light energy into heat energy under near-infrared (NIR) light irradiation to kill bacteria efficiently.
View Article and Find Full Text PDFMolecules
January 2025
School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF) molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze solubility changes of YbOF in the (LiF-CaF). system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!