Veering to a Continuous Platform of Fused Deposition Modeling Based 3D Printing for Pharmaceutical Dosage Forms: Understanding the Effect of Layer Orientation on Formulation Performance.

Pharmaceutics

Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78705, USA.

Published: April 2023

AI Article Synopsis

  • The study focuses on improving 3D printing of personalized medications by addressing lag time and manual tasks associated with standard FDM methods.
  • Researchers formulated fenofibrate into an amorphous solid dispersion using hot-melt extrusion and tested printlets with varying infill densities.
  • Findings showed that while breaking force and drug release were affected by the infill density, the results help refine strategies for transitioning from traditional to continuous 3D printing in pharmaceuticals.

Article Abstract

Three-dimensional (3D) printing of pharmaceuticals has been centered around the idea of personalized patient-based 'on-demand' medication. Fused deposition modeling (FDM)-based 3D printing processes provide the capability to create complex geometrical dosage forms. However, the current FDM-based processes are associated with printing lag time and manual interventions. The current study tried to resolve this issue by utilizing the dynamic -axis to continuously print drug-loaded printlets. Fenofibrate (FNB) was formulated with hydroxypropyl methylcellulose (HPMC AS LG) into an amorphous solid dispersion using the hot-melt extrusion (HME) process. Thermal and solid-state analyses were used to confirm the amorphous state of the drug in both polymeric filaments and printlets. Printlets with a 25, 50, and 75% infill density were printed using the two printing systems, i.e., continuous, and conventional batch FDM printing methods. Differences between the two methods were observed in the breaking force required to break the printlets, and these differences reduced as the infill density went up. The effect on in vitro release was significant at lower infill densities but reduced at higher infill densities. The results obtained from this study can be used to understand the formulation and process control strategies when switching from conventional FDM to the continuous printing of 3D-printed dosage forms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224244PMC
http://dx.doi.org/10.3390/pharmaceutics15051324DOI Listing

Publication Analysis

Top Keywords

dosage forms
12
fused deposition
8
deposition modeling
8
infill density
8
infill densities
8
printing
7
veering continuous
4
continuous platform
4
platform fused
4
modeling based
4

Similar Publications

Objective: Aim: To investigate the effect of succinic acid on the humoral component of the immune system in rats.

Patients And Methods: Materials and Methods: The study was conducted on two groups of mature non-linear white rats (males) of similar weight (200-270 g, aged 6-8 months), with 5 animals in each group. The control group was fed a standard diet with free access to water throughout the experiment.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by dry skin, severe itching, redness, and inflammation. Its complex etiology, involving genetic, immunological, and environmental factors, necessitates innovative therapeutic approaches. This study investigates nanostructured lipid carriers (NLCs) formulated with traditional fermented coconut (Cocos nucifera L.

View Article and Find Full Text PDF

This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom . Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of mycelia by 12.

View Article and Find Full Text PDF

Hyperpigmentation is a common dermatological condition characterized by the darkening of patches of skin compared to the surrounding areas. It can occur in individuals of all skin types and ethnicities, and is caused by an overproduction or accumulation of melanin, the pigment responsible for the color of our skin, hair, and eyes. This comprehensive overview aims to delve into the various types, causes, risk factors, clinical manifestations, diagnosis, and treatment options for hyperpigmentation.

View Article and Find Full Text PDF

Background: Acute pancreatitis (AP) presents a significant clinical challenge with limited therapeutic options. The complex etiology and pathophysiology of AP emphasize the need for innovative treatments. This study explores mRNA-based therapies delivering fibroblast growth factor 21 (FGF21) and apolipoprotein A1 (APOA1), alone and in combination, for treating experimental AP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!