The penetration of substances through the bacterial cell envelope is a complex and underinvestigated process. Mitochondria-targeted antioxidant and antibiotic SkQ1 (10-(plastoquinonyl)decyltriphenylphosphonium) is an excellent model for studying the penetration of substances through the bacterial cell envelope. SkQ1 resistance in Gram-negative bacteria has been found to be dependent on the presence of the AcrAB-TolC pump, while Gram-positive bacteria do not have this pump but, instead, have a mycolic acid-containing cell wall that is a tough barrier against many antibiotics. Here, we report the bactericidal action of SkQ1 and dodecyl triphenylphospho-nium (CTPP) against and , pathogens of plants and humans. The mechanism of the bactericidal action is based on the penetration of SkQ1 and CTPP through the cell envelope and the disruption of the bioenergetics of bacteria. One, but probably not the only such mechanism is a decrease in membrane potential, which is important for the implementation of many cellular processes. Thus, neither the presence of MDR pumps, nor the presence of porins, prevents the penetration of SkQ1 and CTPP through the complex cell envelope of and .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223548PMC
http://dx.doi.org/10.3390/ph16050688DOI Listing

Publication Analysis

Top Keywords

cell envelope
20
penetration substances
8
substances bacterial
8
bacterial cell
8
bactericidal action
8
penetration skq1
8
skq1 ctpp
8
cell
6
penetration
5
envelope
5

Similar Publications

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Palmitoylation-dependent association with Annexin II directs hepatitis E virus ORF3 sorting into vesicles and quasi-enveloped virions.

Proc Natl Acad Sci U S A

January 2025

Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.

Historically considered to be nonenveloped, hepatitis E virus (HEV), an important zoonotic pathogen, has recently been discovered to egress from infected cells as quasi-enveloped virions. These quasi-enveloped virions circulating in the blood are resistant to neutralizing antibodies, thereby facilitating the stealthy spread of infection. Despite abundant evidence of the essential role of the HEV-encoded ORF3 protein in quasi-enveloped virus formation, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

The latent viral reservoir remains the major barrier to HIV cure, placing the burden of strict adherence to antiretroviral therapy (ART) on people living with HIV to prevent recrudescence of viremia. For infants with perinatally acquired HIV, adherence is anticipated to be a lifelong need. In this study, we tested the hypothesis that administration of ART and viral Envelope-specific rhesus-derived IgG1 monoclonal antibodies (RhmAbs) with or without the IL-15 superagonist N-803 early in infection would limit viral reservoir establishment in SIV-infected infant rhesus macaques.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) manifests multiple infections in CD4+ T cells, by binding its envelope proteins to CD4 receptors. Understanding these biological processes is crucial for effective interventions against HIV/AIDS. Here, we propose a mathematical model that accounts for the multiple infections of CD4+ T cells and an intracellular delay in the dynamics of HIV infection.

View Article and Find Full Text PDF

The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!