Schistosome helminths infect over 200 million people across 78 countries and are responsible for nearly 300,000 deaths annually. However, our understanding of basic genetic pathways crucial for schistosome development is limited. The sex determining region Y-box 2 (Sox2) protein is a Sox B type transcriptional activator that is expressed prior to blastulation in mammals and is necessary for embryogenesis. Sox expression is associated with pluripotency and stem cells, neuronal differentiation, gut development, and cancer. Schistosomes express a Sox-like gene expressed in the schistosomula after infecting a mammalian host when schistosomes have about 900 cells. Here, we characterized and named this Sox-like gene . SmSoxS1 protein is a developmentally regulated activator that localizes to the anterior and posterior ends of the schistosomula and binds to Sox-specific DNA elements. In addition to SmSoxS1, we have also identified an additional six Sox genes in schistosomes, two Sox B, one SoxC, and three Sox genes that may establish a flatworm-specific class of Sox genes with planarians. These data identify novel Sox genes in schistosomes to expand the potential functional roles for Sox2 and may provide interesting insights into early multicellular development of flatworms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222431PMC
http://dx.doi.org/10.3390/pathogens12050690DOI Listing

Publication Analysis

Top Keywords

sox genes
20
sox
9
class sox
8
sox-like gene
8
genes schistosomes
8
genes
5
characterization schistosome
4
schistosome sox
4
genes identification
4
identification flatworm
4

Similar Publications

DjsoxP-1 and Djsox5 are essential for tissue homeostasis and regeneration in Dugesia japonica.

Cell Tissue Res

January 2025

College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.

Sox genes encode a family of transcription factors that regulate multiple biological processes during metazoan development, including embryogenesis, tissue homeostasis, nervous system specification, and stem cell maintenance. The planarian Dugesia japonica contains a reservoir of stem cells that grow and divide continuously to support cellular turnover. However, whether SOX proteins retain these conserved functions in planarians remains to be determined.

View Article and Find Full Text PDF

This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression.

View Article and Find Full Text PDF

Genome wide analysis of the sox32 gene in germline maintenance and differentiation in leopard coral grouper (Plectropomus leopardus).

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China. Electronic address:

The Sox family genes, as a group of transcription factors, are widely expressed in vertebrates and play a critical role in reproduction and development. The present study reported that 26 sox genes were identified from the genome and transcriptome of P. leopardus.

View Article and Find Full Text PDF

Background: SOX13 is a transcription factor belonging to the SOX family. SOX proteins are critical regulators of multiple cancer progression, and some are known to control carcinogenesis. Nevertheless, the functional and clinical significance of SOX13 in human thyroid cancer (THCA) remain largely unelucidated.

View Article and Find Full Text PDF

The development of genome technology has opened new possibilities for comparative primate genomics. Non-human primates share approximately 98% genome similarity and provides vital information into the genetic similarities and variances among species utilized as disease models. DNA study links unique genetic variations to common facial attributes such as nose and eyes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!