Recurrent Loss of Macrodomain Activity in Host Immunity and Viral Proteins.

Pathogens

Department of Molecular Biology, School of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA.

Published: May 2023

Protein post-translational modifications (PTMs) are an important battleground in the evolutionary arms races that are waged between the host innate immune system and viruses. One such PTM, ADP-ribosylation, has recently emerged as an important mediator of host antiviral immunity. Important for the host-virus conflict over this PTM is the addition of ADP-ribose by PARP proteins and removal of ADP-ribose by macrodomain-containing proteins. Interestingly, several host proteins, known as macroPARPs, contain macrodomains as well as a PARP domain, and these proteins are both important for the host antiviral immune response and evolving under very strong positive (diversifying) evolutionary selection. In addition, several viruses, including alphaviruses and coronaviruses, encode one or more macrodomains. Despite the presence of the conserved macrodomain fold, the enzymatic activity of many of these proteins has not been characterized. Here, we perform evolutionary and functional analyses to characterize the activity of macroPARP and viral macrodomains. We trace the evolutionary history of macroPARPs in metazoans and show that PARP9 and PARP14 contain a single active macrodomain, whereas PARP15 contains none. Interestingly, we also reveal several independent losses of macrodomain enzymatic activity within mammalian PARP14, including in the bat, ungulate, and carnivore lineages. Similar to macroPARPs, coronaviruses contain up to three macrodomains, with only the first displaying catalytic activity. Intriguingly, we also reveal the recurrent loss of macrodomain activity within the alphavirus group of viruses, including enzymatic loss in insect-specific alphaviruses as well as independent enzymatic losses in two human-infecting viruses. Together, our evolutionary and functional data reveal an unexpected turnover in macrodomain activity in both host antiviral proteins and viral proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221186PMC
http://dx.doi.org/10.3390/pathogens12050674DOI Listing

Publication Analysis

Top Keywords

macrodomain activity
12
host antiviral
12
recurrent loss
8
loss macrodomain
8
activity host
8
proteins
8
viral proteins
8
viruses including
8
enzymatic activity
8
evolutionary functional
8

Similar Publications

Novel α-mangostin derivatives as promising antiviral agents: Isolation, synthesis, and evaluation against chikungunya virus.

Eur J Med Chem

February 2025

Department of Natural Products and Medicinal Chemistry, CSIR-IICT Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

Investigations into fruit and vegetable processing residues (FVPRs) offer huge opportunities to discover novel therapeutics against many diseases. In this study, detailed investigation of Garcinia mangostana fruit peel extract led to the isolation and identification of ten known compounds (1-10). Further, a new series of α-mangostin derived sulphonyl piperzines, aryl alkynes and 1,2,3-triazole derivatives were synthesized using Huisgen 1,3-dipolar cyclo-addition reaction ("click" chemistry).

View Article and Find Full Text PDF

Insights into mechanisms of ubiquitin ADP-ribosylation reversal.

Biochem Soc Trans

December 2024

Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A.

Ubiquitination and ADP-ribosylation are two types of post-translational modification (PTM) involved in regulating various cellular activities. In a striking example of direct interplay between ubiquitination and ADP-ribosylation, the bacterial pathogen Legionella pneumophila uses its SidE family of secreted effectors to catalyze an NAD+-dependent phosphoribosyl ubiquitination of host substrates in a process involving the intermediary formation of ADP-ribosylated ubiquitin (ADPR-Ub). This noncanonical ubiquitination pathway is finely regulated by multiple Legionella effectors to ensure a balanced host subjugation.

View Article and Find Full Text PDF
Article Synopsis
  • Coronaviruses can originate from animals and cause serious illnesses in both humans and animals, with a key protein called Mac1 playing a role in viral replication and interferon inhibition.
  • Researchers discovered a compound, MCD-628, that inhibits Mac1 but found its effectiveness was limited due to poor permeability.
  • By creating more hydrophobic derivatives, they identified four compounds that successfully inhibited Mac1 and reduced replication of coronaviruses, confirming their specificity through drug-resistance mutations, but this resistance came at a cost to the virus's overall fitness.
View Article and Find Full Text PDF

Unlabelled: All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in non-structural protein 3. Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis.

View Article and Find Full Text PDF

A Novel Self-Amplifying mRNA with Decreased Cytotoxicity and Enhanced Protein Expression by Macrodomain Mutations.

Adv Sci (Weinh)

November 2024

Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China.

The efficacy and safety of self-amplifying mRNA (saRNA) have been demonstrated in COVID-19 vaccine applications. Unlike conventional non-replicating mRNA (nrmRNA), saRNA offers a key advantage: its self-replication mechanism fosters efficient expression of the encoded protein, leading to substantial dose savings during administration. Consequently, there is a growing interest in further optimizing the expression efficiency of saRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!