A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large-Scale Synthesis of Hierarchical Porous MOF Particles via a Gelation Process for High Areal Capacitance Supercapacitors. | LitMetric

Large-Scale Synthesis of Hierarchical Porous MOF Particles via a Gelation Process for High Areal Capacitance Supercapacitors.

Nanomaterials (Basel)

Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China.

Published: May 2023

Metal-organic frameworks (MOFs) with hierarchical porous structures have been attracting intense interest currently due to their promising applications in catalysis, energy storage, drug delivery, and photocatalysis. Current fabrication methods usually employ template-assisted synthesis or thermal annealing at high temperatures. However, large-scale production of hierarchical porous metal-organic framework (MOF) particles with a simple procedure and mild condition is still a challenge, which hampers their application. To address this issue, we proposed a gelation-based production method and achieved hierarchical porous zeolitic imidazolate framework-67 (called HP-ZIF67-G thereafter) particles conveniently. This method is based on a metal-organic gelation process through a mechanically stimulated wet chemical reaction of metal ions and ligands. The interior of the gel system is composed of small nano and submicron ZIF-67 particles as well as the employed solvent. The relatively large pore size of the graded pore channels spontaneously formed during the growth process is conducive to the increased transfer rate of substances within the particles. It is proposed that the Brownian motion amplitude of the solute is greatly reduced in the gel state, which leads to porous defects inside the nanoparticles. Furthermore, HP-ZIF67-G nanoparticles interwoven with polyaniline (PANI) exhibited an exceptional electrochemical charge storage performance with an areal capacitance of 2500 mF cm, surpassing those of many MOF materials. This stimulates new studies on MOF-based gel systems to obtain hierarchical porous metal-organic frameworks which should benefit further applications in a wide spectrum of fields ranging from fundamental research to industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222777PMC
http://dx.doi.org/10.3390/nano13101691DOI Listing

Publication Analysis

Top Keywords

hierarchical porous
20
mof particles
8
gelation process
8
areal capacitance
8
metal-organic frameworks
8
porous metal-organic
8
porous
6
hierarchical
5
particles
5
large-scale synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!