In this work, a continuous system to produce multi-hundred-gram quantities of aryl sulfonyl chlorides is described. The scheme employs multiple continuous stirred-tank reactors (CSTRs) and a continuous filtration system and incorporates an automated process control scheme. The experimental process outlined is intended to safely produce the desired sulfonyl chloride at laboratory scale. Suitable reaction conditions were first determined using a batch-chemistry design of experiments (DOE) and several isolation methods. The hazards and incompatibilities of the heated chlorosulfonic acid reaction mixture were addressed by careful equipment selection, process monitoring, and automation. The approximations of the CSTR fill levels and pumping performance were measured by real-time data from gravimetric balances, ultimately leading to the incorporation of feedback controllers. The introduction of process automation demonstrated in this work resulted in significant improvements in process setpoint consistency, reliability, and spacetime yield, as demonstrated in medium- and large-scale continuous manufacturing runs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223716 | PMC |
http://dx.doi.org/10.3390/molecules28104213 | DOI Listing |
J Org Chem
December 2024
Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India.
Sodium salt of aryl sulfinic acid reacts with enynone in a different manner, yielding α-furyl sulfone and stereodefined vinyl sulfone in toluene and EtOH respectively in the presence of ZnCl. The salient features of this protocol include chemoselectivity, broad substrate scope, high efficiency, high yield, and easy purification. The synthetic utilities of the products are demonstrated by cycloaddition and cis-trans photoisomerization reactions.
View Article and Find Full Text PDFOrg Lett
December 2024
Organic Chemistry Department, Science Faculty, Patrice Lumumba Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya strasse, 6, 117198 Moscow, Russia.
Electrolysis of -alkynyl--(formyl)anilides and sodium sulfinates on graphite electrodes delivers biologically sound 3-(sulfonyl)quinol-4-ones with moderate to good yields. The reaction is carried out in an undivided cell in the presence of silver(I) oxide with potassium iodide or sodium tetrafluoroborate as the supporting electrolyte. The reaction tolerates variously substituted anilides as well as aryl and alkyl sulfinates.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
A photocatalytic sulfamoylation/5- cyclization of ()-'-arylidene--phenylmethacrylohydrazides with sulfamoyl chlorides was developed. The chemoselective intramolecular addition of the carbon-centered radical intermediate to the CN bond in the hydrazone motif gave the sulfamoylated pyrazolin-5-one. Besides, sulfonyl chlorides are also suitable reaction partners to access sulfonylated pyrazolin-5-ones.
View Article and Find Full Text PDFOrg Lett
December 2024
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China.
We herein report a photochemical Truce-Smiles rearrangement reaction of -sulfinyl acrylamides with bromodifluoroacetamides resulting in the synthesis of a series of aryl difluoroglutaramides in moderate to good yields. The asymmetric synthesis using chiral sulfinamides produced quaternary carboncentered glutaramide products with a modest enantioselectivity. This protocol effectively complements previous Truce-Smiles rearrangement methods involving -sulfonyl acrylamides.
View Article and Find Full Text PDFJ Org Chem
December 2024
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
A gold-catalyzed sulfonylation of aryl/vinyl iodides to synthesize aryl sulfones facilitated by the ligand-enabled Au(I)/Au(III) redox catalysis was developed. In the reaction, aryl sodium sulfinates or sulphinic acids can react smoothly with aryl/vinyl iodides to directly construct various aryl sulfones. The strong synthetic capabilities of sulfone synthesis are demonstrated by its easily available and handled reagents, good functional group compatibility, and late-stage application of complicated biomolecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!