Mobilization of heavy metals in the environment has been a matter of concern for several decades due to their toxicity for humans, environments, and other living organisms. In recent years, use of inexpensive and abundantly available biosorbents generated from fibrous plant-based food-waste materials to remove heavy metals has garnered considerable research attention. The aim of this review is to investigate the applicability of using fibrous plant-based food waste, which comprises different components such as pectin, hemicellulose, cellulose, and lignin, to remove heavy metals from wastewater. This contribution confirms that plant-fiber-based food waste has the potential to bind heavy metals from wastewater and aqueous solutions. The binding capacities of these biosorbents vary depending on the source, chemical structure, type of metal, modification technology applied, and process conditions used to improve functionalities. This review concludes with a discussion of arguments and prospects, as well as future research directions, to support valorization of fibrous plant-based food waste as an efficient and promising strategy for water purification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221818 | PMC |
http://dx.doi.org/10.3390/molecules28104205 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!