Efficient Treatment of Oily Sludge via Fast Microwave-Assisted Pyrolysis, Followed by Thermal Plasma Vitrification.

Molecules

Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, Zhejiang Provincial Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

Published: May 2023

Oily sludge, as a critical hazardous waste, requires appropriate treatment for resource recovery and harmfulness reduction. Here, fast microwave-assisted pyrolysis (MAP) of oily sludge was conducted for oil removal and fuel production. The results indicated the priority of the fast MAP compared with the MAP under premixing mode, with the oil content in solid residues after pyrolysis reaching below 0.2%. The effects of pyrolysis temperature and time on product distribution and compositions were examined. In addition, pyrolysis kinetics can be well described using the Kissinger-Akahira-Sunose (KAS) and the Flynn-Wall-Ozawa (FWO) methods, with the activation energy being 169.7-319.1 kJ/mol in the feedstock conversional fraction range of 0.2-0.7. Subsequently, the pyrolysis residues were further treated by thermal plasma vitrification to immobilize the existing heavy metals. The amorphous phase and the glassy matrix were formed in the molten slags, resulting in bonding and, hence, immobilization of heavy metals. Operating parameters, including working current and melting time, were optimized to reduce the leaching concentrations of heavy metals, as well as to decrease their volatilization during vitrification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221256PMC
http://dx.doi.org/10.3390/molecules28104036DOI Listing

Publication Analysis

Top Keywords

oily sludge
12
heavy metals
12
fast microwave-assisted
8
microwave-assisted pyrolysis
8
thermal plasma
8
plasma vitrification
8
pyrolysis
6
efficient treatment
4
treatment oily
4
sludge fast
4

Similar Publications

The solid phase composition in oily sludge (OS) is a key factor affecting the oil-solid separation of OS. In this paper, the effects and mechanisms of solid-phase particle factors on the oil content of residue phase were investigated in order to improve the oil-solid separation efficiency. Flotation experiments were carried out on single-size sand and mixed-size sand OS consisting of three particle sizes at room temperature without adding flotation reagents.

View Article and Find Full Text PDF

In the waste oil recycling industry, large amounts of oil-containing sludge are still generated, thus posing a resource depletion issue when disposed of or incinerated without energy recovery or residual oil utilization. In this work, chemical activation experiments using phosphoric acid (HPO) were performed at a low temperature (600 °C) for 30 min to produce porous carbon products. From the results of the pore property analysis, an increasing trend with an increasing impregnation ratio from 0.

View Article and Find Full Text PDF

Microalgal-bacterial biofilms enhance pollutant removal coupling with eicosapentaenoic acid production in high-concentration ammonia‑nitrogen wastewater.

Sci Total Environ

January 2025

Energy saving Research Institute, Anhui Jianzhu University, Hefei 230601, PR China; Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, Anhui Jianzhu University, Hefei 230601, PR China. Electronic address:

Microalgal-bacterial biofilms have emerged as a promising approach for wastewater treatment. However, its potential to treat high-concentration ammonia‑nitrogen wastewater coupling with high-value fatty acid production remains unclear. Therefore, this study explored the efficiency of a microalgal-bacterial biofilm in treating high-concentration ammonia‑nitrogen wastewater and its ability to produce high-value fatty acids, with the activated sludge (bacteria) and microalgal-bacterial suspension as control.

View Article and Find Full Text PDF

The improper disposal of olive mill wastewater (OMW) presents a significant environmental challenge for wastewater treatment plants (WWTPs) in the Gaza Strip. This study aims to evaluate the impact of OMW discharge on the operational efficiency of WWTPs, particularly during the olive harvesting season. To achieve this, samples were collected from both olive mills and WWTPs across the region and analyzed for key parameters such as chemical oxygen demand (COD), biological oxygen demand (BOD), phenols, oil and grease, and total suspended solids (TSS).

View Article and Find Full Text PDF

Insight into the Thermal Washing Mechanism of Sodium Lignosulfonate Alkyl/Sodium Persulfate Compound on Oily Sludge.

Int J Mol Sci

November 2024

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.

Article Synopsis
  • The study investigates the effectiveness of using sodium persulfate (SD) and sodium lignosulfonate surfactant in thermally washing oily sludge to improve remediation methods.
  • It evaluates the impact of various reaction conditions on the breakdown of different hydrocarbon types (saturated, aromatic, resins, and asphaltenes) in oily sludge.
  • Results showed that while SD effectively degrades these hydrocarbons, sodium hydroxide acts as a catalyst, and lignosulfonate aids in the removal process by lowering the solution's surface tension.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!