Modeling of MEMS Transducers with Perforated Moving Electrodes.

Micromachines (Basel)

Faculty of Transportation Sciences, Czech Technical University in Prague, Konviktská 20, 110 00 Praha, Czech Republic.

Published: April 2023

Microfabricated electroacoustic transducers with perforated moving plates used as microphones or acoustic sources have appeared in the literature in recent years. However, optimization of the parameters of such transducers for use in the audio frequency range requires high-precision theoretical modeling. The main objective of the paper is to provide such an analytical model of a miniature transducer with a moving electrode in the form of a perforated plate (rigid elastically supported or elastic clamped at all boundaries) loaded by an air gap surrounded by a small cavity. The formulation for the acoustic pressure field inside the air gap enables expression of the coupling of this field to the displacement field of the moving plate and to the incident acoustic pressure through the holes in the plate. The damping effects of the thermal and viscous boundary layers originating inside the air gap, the cavity, and the holes in the moving plate are also taken into account. The analytical results, namely, the acoustic pressure sensitivity of the transducer used as a microphone, are presented and compared to the numerical (FEM) results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222298PMC
http://dx.doi.org/10.3390/mi14050921DOI Listing

Publication Analysis

Top Keywords

air gap
12
acoustic pressure
12
transducers perforated
8
perforated moving
8
inside air
8
moving plate
8
moving
5
modeling mems
4
mems transducers
4
moving electrodes
4

Similar Publications

Purpose: Tympanoplasty is a surgical procedure performed to cure middle ear infections and restore normal middle ear function. It is one of the most common procedures in otological surgery. Since Wullstein described tympanoplasty, the microscope has been a widely used surgical tool in otological surgery.

View Article and Find Full Text PDF

Background: Air pollution has been linked to respiratory diseases, while the effects of greenness remain inconclusive.

Objective: We investigated the associations between exposure to particulate matter (PM and PM), black carbon (BC), nitrogen dioxide (NO), ozone (O), and greenness (normalized difference vegetation index, NDVI) with respiratory emergency room visits and hospitalizations across seven Northern European centers in the European Community Respiratory Health Survey (ECRHS) study.

Methods: We used modified mixed-effects Poisson regression to analyze associations of exposure in 1990, 2000 and mean exposure 1990-2000 with respiratory outcomes recorded duing ECRHS phases II and III.

View Article and Find Full Text PDF

Characterisation and anaerobic digestion of fat, oil and grease (FOG) waste from wastewater treatment plants.

J Environ Manage

January 2025

Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.

The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production.

View Article and Find Full Text PDF

This study examines the spatiotemporal relationship between PM2.5 exposure and cardiorespiratory mortality across Thailand from 2015 to 2019, addressing a critical research gap in geographical coverage. Analysis of satellite-based PM2.

View Article and Find Full Text PDF

Precision pesticide application mainly relies on canopy volume, resulting in varied application effectiveness across different density areas of orchard trees. This study examined pesticide application effectiveness based on the spray wind, canopy volume, and leaf area within the canopy, providing variable bases for precise regulation of spray wind and pesticide dosage. The study addresses the knowledge gap by utilizing laser detection and ranging (LiDAR) to measure the thickness and leaf area of orchard tree canopies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!