Maximizing the Recycling of Iron Ore Pellets Fines Using Innovative Organic Binders.

Materials (Basel)

Department of Material Science and Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.

Published: May 2023

This research work focuses on the practicality of using organic binders for the briquetting of pellet fines. The developed briquettes were evaluated in terms of mechanical strength and reduction behavior with hydrogen. A hydraulic compression testing machine and thermogravimetric analysis were incorporated into this work to investigate the mechanical strength and reduction behavior of the produced briquettes. Six organic binders, namely Kempel, lignin, starch, lignosulfonate, Alcotac CB6, and Alcotac FE14, in addition to sodium silicate, were tested for the briquetting of pellet fines. The highest mechanical strength was achieved using sodium silicate, Kempel, CB6, and lignosulfonate. The best combination of binder to attain the required mechanical strength even after 100% reduction was found to be a combination of 1.5 wt.% of organic binder (either CB6 or Kempel) with 0.5 wt.% of inorganic binder (sodium silicate). Upscaling using an extruder gave propitious results in the reduction behavior, as the produced briquettes were highly porous and attained pre-requisite mechanical strength.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222711PMC
http://dx.doi.org/10.3390/ma16103888DOI Listing

Publication Analysis

Top Keywords

mechanical strength
20
organic binders
12
reduction behavior
12
sodium silicate
12
briquetting pellet
8
pellet fines
8
strength reduction
8
behavior produced
8
produced briquettes
8
mechanical
5

Similar Publications

Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.

View Article and Find Full Text PDF

This study investigates developing and characterizing electrospun nanofibers composed of polyvinyl alcohol (PVA) and oxidized xanthan gum (OXG), with nisin as a bioactive agent, for innovative food packaging applications. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed successful crosslinking between PVA and OXG, along with uniform nisin dispersion within the fibers. The inclusion of OXG increased moisture content (MC) and water solubility (WS) while reducing porosity and water vapor permeability (WVP), demonstrating its role as a crosslinker.

View Article and Find Full Text PDF

Dynamic reactive synthesis of bio-based compatibilizer via diepoxide monomers grafting polylactic acid and reactive compatibilization of incompatible polylactic acid/bamboo powder composites.

Int J Biol Macromol

March 2025

School of Chemistry and Chemical Engineering Hainan University, Haikou 570228, Hainan Province, China; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China. Electronic address:

The synthesis of monomers with two epoxy structures (EIA) was successfully achieved by adopting holo-biobased feedstocks and in situ solvolysis reaction. The molecular structure of EIA was subjected to characterization through the use of infrared spectroscopy (IR), mass spectrometry (MS), and nuclear magnetic resonance hydrogen spectroscopy (H NMR). The EIA was employed as the epoxy monomers for the synthesis of the grafted compatibilizer, resulting in the successful preparation of a fully bio-based and high epoxy value grafted compatibilizer (PLA-g-EIA (PLE)).

View Article and Find Full Text PDF

Electrospun pectin nanofibers have emerged as a transformative advancement in biomaterials, offering remarkable potential across diverse biomedical and industrial applications. This review explores the synthesis, optimization, and versatile applications of electrospun pectin nanofibers, highlighting their unique properties, including biocompatibility, biodegradability, and adaptability for functionalization. Pectin's structural diversity, coupled with its ability to form hydrogels and interact with biological systems, makes it a promising candidate for wound healing, drug delivery, tissue engineering, and smart packaging.

View Article and Find Full Text PDF

A corrosion and wear resistant coating was developed on the surface of titanium alloy using micro-arc oxidation (MAO) technology with addition of lignin sulfonate (SLS) as an additive in electrolytes containing 15 g/L of NaSiO·9HO and 10 g/L of NaPO·12HO. The effects of concentration of SLS on the surface morphology, microstructure, and corrosion-wear performance of the MAO coatings were systematically investigated. Wetting properties and mechanical characteristics of MAO coatings were determined by contact angle measurements, microhardness testing, and bonding strength assessments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!