AI Article Synopsis

  • - Cellulose-based materials are stable, versatile, and eco-friendly, making them popular alternatives to plastics and metals in many applications, particularly in promoting ecological sustainability.
  • - Recent developments include the creation of mesoporous structures and flexible films made from cellulose, which can incorporate conductive materials for various energy-related uses, such as in solar cells and batteries.
  • - The article reviews the preparation, properties, and applications of cellulose composites, discusses their integration into energy devices, and outlines challenges and future directions in the field.

Article Abstract

The various forms of cellulose-based materials possess high mechanical and thermal stabilities, as well as three-dimensional open network structures with high aspect ratios capable of incorporating other materials to produce composites for a wide range of applications. Being the most prevalent natural biopolymer on the Earth, cellulose has been used as a renewable replacement for many plastic and metal substrates, in order to diminish pollutant residues in the environment. As a result, the design and development of green technological applications of cellulose and its derivatives has become a key principle of ecological sustainability. Recently, cellulose-based mesoporous structures, flexible thin films, fibers, and three-dimensional networks have been developed for use as substrates in which conductive materials can be loaded for a wide range of energy conversion and energy conservation applications. The present article provides an overview of the recent advancements in the preparation of cellulose-based composites synthesized by combining metal/semiconductor nanoparticles, organic polymers, and metal-organic frameworks with cellulose. To begin, a brief review of cellulosic materials is given, with emphasis on their properties and processing methods. Further sections focus on the integration of cellulose-based flexible substrates or three-dimensional structures into energy conversion devices, such as photovoltaic solar cells, triboelectric generators, piezoelectric generators, thermoelectric generators, as well as sensors. The review also highlights the uses of cellulose-based composites in the separators, electrolytes, binders, and electrodes of energy conservation devices such as lithium-ion batteries. Moreover, the use of cellulose-based electrodes in water splitting for hydrogen generation is discussed. In the final section, we propose the underlying challenges and outlook for the field of cellulose-based composite materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221535PMC
http://dx.doi.org/10.3390/ma16103856DOI Listing

Publication Analysis

Top Keywords

cellulose-based composites
12
wide range
8
energy conversion
8
energy conservation
8
cellulose-based
7
energy
5
materials
5
advances cellulose-based
4
composites
4
composites energy
4

Similar Publications

In vitro study of dimethyl glutamate incorporated chitosan/microfibrillated cellulose based matrix in addition of H and Zr on osteoblast cells.

Int J Biol Macromol

December 2024

Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004, India. Electronic address:

Tissue engineering techniques can be utilized to repair or regenerate damaged tissue by promoting the proliferation and differentiation of cells in bone regeneration. A critical component of this process is the scaffold employed, which should ideally support consistent tissue development during bone regeneration. The aim of this study was to evaluate the morphological, physicochemical, and biological characteristics of various scaffolds: S1 (C/MFC), S2 (C/H/MFC), S3 (C/MFC/Zr), S4 (C/MFC/PCL), S5 (C/H/MFC/PCL), S6 (C/PCL/MFC/Zr), and S7 (C/H/MFC/Zr), which are intended for application in bone regeneration.

View Article and Find Full Text PDF

Cellulose, the most abundant biomass, is highly appreciated for its robustness, biodegradability, and renewability, garnering significant interest for innovative applications in sustainable functional materials. Composites of cellulose and polyaniline (PANI) are particularly promising for flexible supercapacitors because of their ease of processing, excellent electrical conductivity, and high theoretical specific capacitance. However, challenges persist due to the tendency of PANI to agglomerate and the weak interfacial interactions between PANI and cellulose fibers (CFs).

View Article and Find Full Text PDF

Strong, high barrier, water- and oil-resistant cellulose paper-based packaging material enabled by polyvinyl alcohol-bentonite coordination interactions.

Int J Biol Macromol

November 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037 Nanjing, China. Electronic address:

Nowadays, plastics are widely used in daily life, but they pose huge threats to both the environment and human health. Therefore, it is imperative to develop green, sustainable and high-performance cellulose-based paper materials to replace plastics. A key challenge for paper-based packaging materials is the need for waterproof and oil-resistant properties.

View Article and Find Full Text PDF

Innovative super-hydrophilic/superoleophobic eco-friendly sponge composite is fabricated by integrating chemically-modified cellulose with lignin derived from bio-waste wheat-straw. Such combination is implemented by modifying cellulose with thiadiazole-amide and integrating it with lignin using microwave/ultrasonic-powered in-liquid plasma. Physicochemical characteristics of sponge-composite (WL-TDAC) are studied using FTIR, N-physisorption, DLS, SEM, chemical-computational analysis, and surface wettability.

View Article and Find Full Text PDF

Development of cellulose-based self-healing hydrogel smart packaging for fish preservation and freshness indication.

Carbohydr Polym

January 2025

Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China. Electronic address:

Biomass-based composite packaging materials loaded with functional fillers have good application prospects in food preservation and freshness detection. Self-healing hydrogel packaging films based on nanocellulose (CNF), polyvinyl alcohol (PVA), and ZIF-8 embedded with curcumin (Cur@ZIF-8) were developed in this study. The synthesis of Cur@ZIF-8 was demonstrated by characterization experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: