Bioleaching Modeling-A Review.

Materials (Basel)

Faculty of Engineering and Architecture, Arturo Prat University, Iquique 1110939, Chile.

Published: May 2023

The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral treatment processes has become widespread in recent decades, due to advantages such as the non-production of emissions or pollution, energy savings, low process costs, products compatible with the environment, and increases in the benefit of low-grade mining deposits. The purpose of this work is to introduce the theoretical foundations associated with modeling the process of bioleaching, mainly the modeling of mineral recovery rates. The different models are collected from models based on conventional leaching dynamics modeling, based on the shrinking core model, where the oxidation process is controlled by diffusion, chemically, or by film diffusion until bioleaching models based on statistical analysis are presented, such as the surface response methodology or the application of machine learning algorithms. Although bioleaching modeling (independent of modeling techniques) of industrial (or large-scale mined) minerals is a fairly developed area, bioleaching modeling applied to rare earth elements is a field with great growth potential in the coming years, as in general bioleaching has the potential to be a more sustainable and environmentally friendly mining method than traditional mining methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224567PMC
http://dx.doi.org/10.3390/ma16103812DOI Listing

Publication Analysis

Top Keywords

bioleaching modeling
12
conventional leaching
8
models based
8
bioleaching
6
modeling
6
process
5
bioleaching modeling-a
4
modeling-a review
4
review leaching
4
leaching minerals
4

Similar Publications

Biological charcoal loaded with nano zero-valent iron (nZVI@BC) was synthesized using the bioleaching co-pyrolysis method. This study analyzed the formulation sequence of nZVI@BC and its influence on chromium elimination from water and soil, along with the involved mechanisms. The bioleaching method facilitated ionic iron incorporation onto biochar in the form of yellow potassium ferroalum compounds, which were reduced to Fe by H, CO, and CH generated during biomass co-pyrolysis.

View Article and Find Full Text PDF

Enhanced Oxidative Bioleaching for Nickel and Metal Recovery from Arsenic Ores Moves Toward Efficient and Sustainable Extraction.

Chemosphere

December 2024

College of Health and Science, School of Natural Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, LN6 7DL, United Kingdom. Electronic address:

The research focuses on extracting nickel and other valuable elements through oxidative bioleaching from two distinct arsenic-rich ores of varying grades. This process involved utilizing a mix of mesophilic and moderately thermophilic bacteria in shake flasks with different pulp density levels to bio-leach nickeline. Mesophilic bacteria achieved over 99% nickel dissolution from both low- and high-grade ores within 10 and 28 days, respectively, at pulp densities of 0.

View Article and Find Full Text PDF

Lithium (Li) is becoming increasingly important due to its use in clean technologies that are required for the transition to net zero. Although acidophilic bioleaching has been used to recover metals from a wide range of deposits, its potential to recover Li has not yet been fully explored. In this study, we used a model Fe(II)- and S-oxidising bacterium, (At.

View Article and Find Full Text PDF

Toward the bioleaching of bauxite residue by Gluconobacter oxydans.

J Appl Microbiol

November 2024

Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, Kalmar, Sweden.

Aim: This project evaluated a biologically mediated strategy to solubilize several rare earth elements and critical raw materials, including scandium, from bauxite residue. This work seeks to expand on previous research on contact leaching with bauxite.

Methods And Results: In this study, Gluconobacter oxydans was shown to secrete mixed organic acids, including gluconic acid, which was superior to pure gluconic acid in the dissolution of bauxite residue, even at low molarities.

View Article and Find Full Text PDF

Photo-, microbial, and abiotic dark reduction of soil mercury (Hg) may all lead to elemental mercury (Hg(0)) emissions. Utilizing lab incubations, isotope signatures of Hg(0) emitted from mining soils were characterized to quantify the interplay and contributions of various Hg reduction pathways, which have been scarcely studied. At 15 °C, microbial reduced Hg(0) showed a negative mass-dependent fractionation (MDF) (δHg = -0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!