The concept of sustainable development provides for the search for environmentally friendly alternatives to traditional materials and technologies that would reduce the amount of CO emissions into the atmosphere, do not pollute the environment, and reduce energy costs and the cost of production processes. These technologies include the production of geopolymer concretes. The purpose of the study was a detailed in-depth analytical review of studies of the processes of structure formation and properties of geopolymer concretes in retrospect and the current state of the issue. Geopolymer concrete is a suitable, environmentally friendly and sustainable alternative to concrete based on ordinary Portland cement (OPC) with higher strength and deformation properties due to its more stable and denser aluminosilicate spatial microstructure. The properties and durability of geopolymer concretes depend on the composition of the mixture and the proportions of its components. A review of the mechanisms of structure formation, the main directions for the selection of compositions and processes of polymerization of geopolymer concretes has been made. The technologies of combined selection of the composition of geopolymer concrete, production of nanomodified geopolymer concrete, 3D printing of building structures from geopolymer concrete, and monitoring the state of structures using self-sensitive geopolymer concrete are considered. Geopolymer concrete with the optimal ratio of activator and binder has the best properties. Geopolymer concretes with partial replacement of OPC with aluminosilicate binder have a denser and more compact microstructure due to the formation of a large amount of calcium silicate hydrate, which provides improved strength, durability, less shrinkage, porosity and water absorption. An assessment of the potential reduction in greenhouse gas emissions from the production of geopolymer concrete compared to the production of OPC has been made. The potential of using geopolymer concretes in construction practice is assessed in detail.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222474 | PMC |
http://dx.doi.org/10.3390/ma16103792 | DOI Listing |
Sci Rep
December 2024
Civil Engineering Department, Shoolini University, Solan, Himachal Pradesh, 173229, India.
Geopolymer concrete (GPC) offers a sustainable alternative by eliminating the need for cement, thereby reducing carbon dioxide emissions. Using durable concrete helps prevent the corrosion of reinforcing bars and reduces spalling caused by chemical attacks. This study investigates the impact of adding 5, 10, and 15% silica fumes (SF) on the mechanical and durability properties of GPC cured at 60 °C for 24 h.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Civil Engineering, SRM University-AP, Andhra Pradesh, Amaravati, India.
Environ Res
December 2024
Department of Physics, King Fahd University of Petroleum & Minerals, Saudi Arabia; KACARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
In light of the growing need to mitigate climate change impacts, this study presents an innovative methodology combining ensemble machine learning with experimental data to accurately predict the carbon dioxide footprint (CO-FP) of fly ash geopolymer concrete. The approach employs adaptive boosting to enhance decision tree regression (DTR) and support vector regression (SVR), resulting in a robust predictive framework. The models used key material features, including fly ash concentration, fine and coarse aggregates, superplasticizer, curing temperature, and alkali activator levels.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Technological Faculty, Platov South-Russian State Polytechnic University (NPI), Prosveshcheniya St., 132, Novocherkassk 346428, Russia.
The objective of this research is to fabricate waste-based alkali-activated foams with better properties in a quick time by using energy-efficient techniques such as microwave irradiation. The present study reports the effect of microwave heating parameters, including heating time and output power, on the properties of porous alkali-activated materials (AAMs) that use coal gangue (CG) as a precursor. The effects of concrete waste (CW) content (0-20 wt %) on the performance and microstructure of CG-based AAMs were investigated.
View Article and Find Full Text PDFGels
October 2024
Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!