The study aimed to test the durability of coatings under natural conditions. The present study focused on the changes in wettability and additional properties of the coatings under natural conditions. The specimens were subjected to outdoor exposure and additionally immersed in the pond. Impregnating porous anodized aluminum is a popular production method for hydrophobic and superhydrophobic surfaces. However, prolonged exposure of such coatings to natural conditions causes leaching of the impregnate and, thus, the loss of hydrophobic properties. After the loss of hydrophobic properties, all kinds of impurities and fouling adhere better to the porous structure. Additionally, deterioration of anti-icing and anti-corrosion properties was observed. Finally, the self-cleaning, anti-fouling, anti-icing and anti-corrosion properties were comparable or even worse to those of the hydrophilic coating. In the case of superhydrophobic specimens, during outdoor exposure there was no loss of superhydrophobicity, self-cleaning and anti-corrosion properties. Still, despite this, the icing delay time dropped. During outdoor exposure, the structure, which initially had anti-icing properties, may degrade. Nevertheless, the hierarchical structure responsible for the superhydrophobic effect can still be preserved. The superhydrophobic coating initially had the best anti-fouling properties. However, the coating was also gradually losing its superhydrophobic properties during water immersion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221504PMC
http://dx.doi.org/10.3390/ma16103729DOI Listing

Publication Analysis

Top Keywords

natural conditions
16
coatings natural
12
outdoor exposure
12
anti-corrosion properties
12
properties
10
additional properties
8
conditions study
8
loss hydrophobic
8
hydrophobic properties
8
anti-icing anti-corrosion
8

Similar Publications

B-cell acute lymphoblastic leukemia (B-ALL) is the most common form of cancer diagnosed in children. While the majority of patients survive with conventional treatment, chemotherapeutic agents have adverse effects and the potential for relapse persists even after full recovery. Given their pivotal function in anti-cancer immunity, there has been a surge in research exploring the potential of natural killer (NK) cells in immunotherapy, which has emerged as a promising avenue for treating leukemia.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a multifaceted inflammatory skin condition characterized by the involvement of various cell types, such as keratinocytes, macrophages, neutrophils, and mast cells. Research indicates that flavonoids possess anti-inflammatory properties that may be beneficial in the management of AD. However, the investigation of the glycoside forms for anti-AD therapy is limited.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is an important risk factor for brain cognitive impairment, but the specific mechanism is still unclear. The imbalance of gut microbiota under pathological conditions (such as an increase in pathogenic bacteria) may be involved in the occurrence of various diseases. The purpose of this study is to investigate the effect of increased abundance of gut Citrobacter rodentium on cognitive function in T2D mice.

View Article and Find Full Text PDF

The present investigation evaluated the potential impacts of morin, a natural flavonoid, against cardiovascular disorders. Since inception until September 2024, PubMed, Scopus, and Web of Science have been searched extensively. The process involved eliminating duplicate entries and conducting a systematic review of the remaining studies post-full-text screening.

View Article and Find Full Text PDF

In surface waters, photodegradation is a major abiotic removal pathway of the neurotoxin monomethylmercury (MMHg), acting as a key control on the amounts of MMHg available for biological uptake. Different environmental factors can alter the rate of MMHg photodegradation. However, our understanding of how MMHg photodegradation pathways in complex matrixes along the land-to-ocean aquatic continuum respond to changes in salinity, dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) composition is incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!