Poly(ADPribosyl)ation is a post-translational protein modification, catalyzed by poly(ADP-ribose) polymerase (PARPs) enzymes, responsible for ADP-ribose polymer synthesis (PAR) from NAD. PAR turnover is assured by poly(ADPR) glycohydrolase (PARGs) enzymes. In our previous study, the altered histology of zebrafish brain tissue, resulting in demyelination and neurodegeneration also with poly(ADPribosyl)ation hyperactivation, was demonstrated after aluminum (Al) exposure for 10 and 15 days. On the basis of this evidence, the aim of the present research was to study the synthesis and degradation of poly(ADP-ribose) in the brain of adult zebrafish exposed to 11 mg/L of Al for 10, 15, and 20 days. For this reason, PARP and PARG expression analyses were carried out, and ADPR polymers were synthesized and digested. The data showed the presence of different PARP isoforms, among which a human PARP1 counterpart was also expressed. Moreover, the highest PARP and PARG activity levels, responsible for the PAR production and its degradation, respectively, were measured after 10 and 15 days of exposure. We suppose that PARP activation is related to DNA damage induced by Al, while PARG activation is needed to avoid PAR accumulation, which is known to inhibit PARP and promote parthanatos. On the contrary, PARP activity decrease at longer exposure times suggests that neuronal cells could adopt the stratagem of reducing polymer synthesis to avoid energy expenditure and allow cell survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218123PMC
http://dx.doi.org/10.3390/ijms24108766DOI Listing

Publication Analysis

Top Keywords

synthesis degradation
8
degradation polyadp-ribose
8
zebrafish brain
8
polymer synthesis
8
parp parg
8
parp
6
synthesis
4
polyadp-ribose zebrafish
4
brain exposed
4
exposed aluminum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!