The measurement of oxygen consumption is an important element in the understanding of an organism's metabolic state. Oxygen is also a phosphorescence quencher, which allows the evaluation of phosphorescence emitted by oxygen sensors. Two Ru(II)-based oxygen-sensitive sensors were used to study the effect of chemical compounds [() = [CoCl(dap)]Cl, and () = [CoCl(en)]Cl (AmB = amphotericin B) against reference and clinical strains of . The -[(4,7-diphenyl-1,10-phenanthroline)ruthenium(II)] chloride ([Ru(DPP)]Cl) (Box) adsorbed onto the Davisil silica gel was embedded in the silicone rubber Lactite NuvaSil 5091 and the coating on the bottom of 96-well plates. The water-soluble oxygen sensor (BsOx = -[(4,7-diphenyl-1,10-phenanthrolinedisulphonic acid disodium)ruthenium(II)] chloride 'x' hydrate = {Ru[DPP(SONa)]}Cl = water molecules were omitted in the BsOx formula) was synthesized and characterized by RP-UHPLC, LCMS, MALDI, elemental analysis, ATR, UV-Vis, H NMR, and TG/IR techniques. The microbiological studies were performed in the environment of RPMI broth and blood serum. Both Ru(II)-based sensors turned out to be useful in the study of the activity of Co(III) complexes and the commercial antifungal drug amphotericin B. In addition, a new activity of the oxygen sensor, the soluble Ru(II) complex BsOx, was demonstrated, which is a mixture with amphotericin B that caused a significant increase in its antifungal activity. Thus, it is also possible to demonstrate the synergistic effect of compounds active against the microorganisms under study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218578PMC
http://dx.doi.org/10.3390/ijms24108744DOI Listing

Publication Analysis

Top Keywords

oxygen sensors
8
coiii complexes
8
antifungal activity
8
oxygen sensor
8
oxygen
5
ruii oxygen
4
sensors
4
sensors coiii
4
amphotericin
4
complexes amphotericin
4

Similar Publications

Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.).

Plant Physiol Biochem

January 2025

Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:

Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Reimagining apnea monitoring in the neonatal ICU.

Curr Opin Pediatr

December 2024

Division of Neonatology, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada.

Purpose Of Review: This review outlines the prevalence and complications of apneas and intermittent hypoxemic events in preterm infants, examines current monitoring limitations in neonatal ICUs (NICUs), and explores emerging technologies addressing these challenges.

Recent Findings: New evidence from the Prematurity-Related Ventilatory Control (Pre-Vent) study, which analyzed cardiorespiratory data from 717 extremely preterm infants, exposes the varying frequency, duration, and severity of apneas, intermittent hypoxemia, bradycardias, and periodic breathing during hospitalization, and highlights the negative impact of intermittent hypoxemia on pulmonary outcomes at discharge. Although traditional monitoring methods cannot differentiate between apnea types and quantify their burden, recent advancements in sensor technologies and data integration hold promise for improving real-time detection and evaluation of apneas in the NICU.

View Article and Find Full Text PDF

Considerable research has focused on advanced wound dressing technology over the past decade. The increasing emphasis on health and medical treatment is crucial to the modern healthcare system. Consequently, high-quality wound dressings with advanced standards are essential for superior medical care.

View Article and Find Full Text PDF

The study focused on converting tea bag waste into strong fluorescence carbon quantum dots (TBW-CQDs) for the detection of acrylamide in drinking water, antimicrobial activity, and photocatalytic degradation. The TBW-CQDs exhibited blue luminescence and maximum absorbance at 287 nm under UV light and distinctive fluorescence emission and excitation wavelengths at 425 nm and 287 nm, respectively. TBW-CQDs revealed a particle size of 8.

View Article and Find Full Text PDF

Recent advancements in artificial intelligence-enabled medical gas sensing have led to enhanced accuracy, safety, and efficiency in healthcare. Medical gases, including oxygen, nitrous oxide, and carbon dioxide, are essential for various treatments but pose health risks if improperly managed. This review highlights the integration of artificial intelligence in medical gas sensing, enhancing traditional sensors through advanced data processing, pattern recognition, and real-time monitoring capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!