As unicellular parasites are highly dependent on NADPH as a source for reducing equivalents, the main NADPH-producing enzymes glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) of the pentose phosphate pathway are considered promising antitrypanosomatid drug targets. Here we present the biochemical characterization and crystal structure of 6PGD (6PGD) in complex with NADP(H). Most interestingly, a previously unknown conformation of NADPH is visible in this structure. In addition, we identified auranofin and other gold(I)-containing compounds as efficient 6PGD inhibitors, although it has so far been assumed that trypanothione reductase is the sole target of auranofin in . Interestingly, 6PGD from is also inhibited at lower micromolar concentrations, whereas human 6PGD is not. Mode-of-inhibition studies indicate that auranofin competes with 6PG for its binding site followed by a rapid irreversible inhibition. By analogy with other enzymes, this suggests that the gold moiety is responsible for the observed inhibition. Taken together, we identified gold(I)-containing compounds as an interesting class of inhibitors against 6PGDs from and possibly from other protozoan parasites. Together with the three-dimensional crystal structure, this provides a valid basis for further drug discovery approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217883 | PMC |
http://dx.doi.org/10.3390/ijms24108615 | DOI Listing |
Cell Rep
January 2025
Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. Electronic address:
The redox state of proteins is essential for their function and guarantees cell fitness. Peroxiredoxins protect cells against oxidative stress, maintain redox homeostasis, act as chaperones, and transmit hydrogen peroxide signals to redox regulators. Despite the profound structural and functional knowledge of peroxiredoxins action, information on how the different functions are concerted is still scarce.
View Article and Find Full Text PDFBMC Cancer
January 2025
Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.
Background: Caffeic acid phenethyl ester (CAPE) is the main bioactive component of poplar type propolis. We previously reported that treatment with caffeic acid phenethyl ester (CAPE) suppressed the cell proliferation, tumor growth, as well as migration and invasion of prostate cancer (PCa) cells via inhibition of signaling pathways of AKT, c-Myc, Wnt and EGFR. We also demonstrated that combined treatment of CAPE and docetaxel altered the genes involved in glycolysis and tricarboxylic acid (TCA) cycle.
View Article and Find Full Text PDFPol Merkur Lekarski
December 2024
BUKOVYNIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE.
Objective: . Aim: To find out the influence of melatonin on the enzyme activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and transketolase in the liver of rats with alloxan diabetes under conditions of variable photoperiod.
Patients And Methods: Materials and Methods: Experiments were conducted on male outbred white rats weighing 180±10 mg.
3 Biotech
January 2025
Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation and Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, 264005 Shandong People's Republic of China.
Unlabelled: 6-Phosphogluconate dehydrogenases (6PGDHs) are widely existing as reduced cofactor (NADH/NADPH) regeneration biocatalysts. Herein, a thermostable 6PGDH from (Ht6PGDH) was overexpressed in and enzymologically characterized. Ht6PGDH exhibited exceptional stability and catalytic activity under high-temperature conditions, with an optimum temperature of 85 °C and the ability to maintain high activity for prolonged periods at 70 °C, which could be purified through a one-step heat treatment.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
This study aimed to explore the effects of sodium butyrate on liver metabolism in goats subjected to a high-concentrate diet. We randomly assigned twelve Saanen-lactating goats into two groups, one of which received a high-concentrate diet (concentrate: forage = 60:40, control group), while the other received the same basal diet supplemented with sodium butyrate (SB) (10 g/kg basal diet, SB group). Compared with the control diet, the SB diet considerably increased the milk fat percentage and content ( < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!