Adiponectin, a hormone secreted by adipocytes, has anti-inflammatory effects and is involved in various physiological and pathological processes such as obesity, inflammatory diseases, and cartilage diseases. However, the function of adiponectin in intervertebral disc (IVD) degeneration is not well understood. This study aimed to elucidate the effects of AdipoRon, an agonist of adiponectin receptor, on human IVD nucleus pulposus (NP) cells, using a three-dimensional in vitro culturing system. This study also aimed to elucidate the effects of AdipoRon on rat tail IVD tissues using an in vivo puncture-induced IVD degeneration model. Analysis using quantitative polymerase chain reaction demonstrated the downregulation of gene expression of proinflammatory and catabolic factors by interleukin (IL)-1β (10 ng/mL) in human IVD NP cells treated with AdipoRon (2 μM). Furthermore, western blotting showed AdipoRon-induced suppression of p65 phosphorylation ( < 0.01) under IL-1β stimulation in the adenosine monophosphate-activated protein kinase (AMPK) pathway. Intradiscal administration of AdipoRon was effective in alleviating the radiologic height loss induced by annular puncture of rat tail IVD, histomorphological degeneration, production of extracellular matrix catabolic factors, and expression of proinflammatory cytokines. Therefore, AdipoRon could be a new therapeutic candidate for alleviating the early stage of IVD degeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217873 | PMC |
http://dx.doi.org/10.3390/ijms24108566 | DOI Listing |
Acta Biomater
January 2025
Department of Industrial Engineering, School of Engineering and Architecture, University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy. Electronic address:
Intervertebral disc (IVD) degeneration is suspected to affect the distribution of stress and strain near the vertebral endplates and in the underlying bone. This scenario is worsened by the presence of metastatic lesions on the vertebrae (primarily thoracic vertebrae (60-80%)) which increase the risk of fracture. As such, this study aimed to evaluate the effect of IVD degeneration on the internal volumetric strains and failure modes of human metastatic vertebral bodies.
View Article and Find Full Text PDFAnat Histol Embryol
January 2025
Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China.
The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
Intervertebral disc (IVD) degeneration represents a significant cause of chronic back pain and disability, with a substantial impact on the quality of life. Conventional therapeutic modalities frequently address the symptoms rather than the underlying etiology, underscoring the necessity for regenerative therapies that restore disc function. Polysaccharide-based materials, such as hyaluronic acid, alginate, chitosan, and chondroitin sulfate, have emerged as promising candidates for intervertebral disc degeneration (IVDD) therapy due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix (ECM) of the nucleus pulposus (NP).
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China. Electronic address:
Background: Nucleus pulposus (NP) degeneration represents a significant contributing factor in the pathogenesis of intervertebral disc (IVD) degeneration (IVDD), and is a key underlying mechanism in several lumbar spine pathologies. Nevertheless, the precise mechanisms that govern NP degeneration remain unclear. A significant contributing factor to IVDD has been identified as ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!