Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The somatosensory system is multidimensional and processes important information for survival, including the experience of pain. The brainstem and spinal cord serve pivotal roles in both transmitting and modulating pain signals from the periphery; although, they are studied less frequently with neuroimaging when compared to the brain. In addition, imaging studies of pain often lack a sensory control condition, failing to differentiate the neural processes associated with pain versus innocuous sensations. The purpose of this study was to investigate neural connectivity between key regions involved in descending modulation of pain in response to a hot, noxious stimulus as compared to a warm, innocuous stimulus. This was achieved with functional magnetic resonance imaging (fMRI) of the brainstem and spinal cord in 20 healthy men and women. Functional connectivity was observed to vary between specific regions across painful and innocuous conditions. However, the same variations were not observed in the period of anticipation prior to the onset of stimulation. Specific connections varied with individual pain scores only during the noxious stimulation condition, indicating a significant role of individual differences in the experience of pain which are distinct from that of innocuous sensation. The results also illustrate significant differences in descending modulation before and during stimulation in both conditions. These findings contribute to a deeper understanding of the mechanisms underlying pain processing at the level of the brainstem and spinal cord, and how pain is modulated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216620 | PMC |
http://dx.doi.org/10.3390/brainsci13050777 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!