Background And Objectives: We examined sex differences in the excitatory and inhibitory functions of the primary somatosensory cortex (S1) between males and females during the early follicular phase, when estradiol hormones are unaffected.

Methods: Fifty participants (25 males and 25 females) underwent measurement of somatosensory evoked potentials (SEPs) and paired-pulse inhibition (PPI) in the S1; SEPs and PPI were elicited by constant current square-wave pulses (0.2 ms duration) delivered to the right median nerve by electrical stimulation. Paired-pulse stimulation occurred at 30- and 100-ms interstimulus intervals. Participants were randomly presented with 1500 (500 stimuli each) single- and paired-pulse stimuli at 2 Hz.

Results: The N20 amplitude was significantly larger in female subjects than in male subjects, and the PPI-30 ms was significantly potentiated in female subjects compared to that in male subjects.

Conclusions: The excitatory and inhibitory functions in S1 differ between male and female subjects, at least during the early follicular phase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216438PMC
http://dx.doi.org/10.3390/brainsci13050761DOI Listing

Publication Analysis

Top Keywords

excitatory inhibitory
12
early follicular
12
follicular phase
12
female subjects
12
sex differences
8
differences excitatory
8
primary somatosensory
8
somatosensory cortex
8
inhibitory functions
8
males females
8

Similar Publications

Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process.

View Article and Find Full Text PDF

Paroxysmal sympathetic hyperactivity: A common consequence of traumatic brain injury.

Auton Neurosci

January 2025

Department of Medicine, Jinnah Sindh Medical University, Rafiqi H J Shaheed Road, Karachi, Pakistan. Electronic address:

Paroxysmal Sympathetic Hyperactivity (PSH) is a challenging and often underrecognized syndrome, commonly arising after a traumatic brain injury (TBI). Characterized by episodic bursts of heightened sympathetic activity, PSH presents with a distinct constellation of symptoms including hypertension, tachycardia, hyperthermia, and diaphoresis. While the exact pathophysiology remains elusive, current evidence suggests that the syndrome results from an imbalance between excitatory and inhibitory neuronal pathways within the central nervous system, leading to dysregulated autonomic responses.

View Article and Find Full Text PDF

Repetitive TMS (rTMS) is a powerful neuroscientific tool with the potential to noninvasively identify brain-behavior relationships in humans. Early work suggested that certain rTMS protocols (e.g.

View Article and Find Full Text PDF

Background: Age-related neurodegenerative disorders (NDDs) continuum includes late-onset Alzheimer's disease (LOAD), Dementia with Lewy bodies (DLB), and Parkinson's disease (PD) exhibit shared and distinct clinicopathological characteristics. Each of the different NDDs is characterized by a complex genetic etiology and although numerous loci have been identified via GWAS, and the causal genes and the specific neuronal and glial cell subtypes through which they exert their pathogenic effects are yet to be fully elucidated. We aimed to untangle the genetic complexity of NDDs, and to identify shared and distinct biological pathways and disease driver cell-subtypes across NDDs.

View Article and Find Full Text PDF

Background: Our Alzheimer Disease Metabolomics Consortium (ADMC), part of the Accelerating Medicines Partnership for AD (AMP-AD) and in partnership with AD Neuroimaging Initiative (ADNI), applied state-of-the-art metabolomics and lipidomics technologies combined with genomic and imaging data to map metabolic failures across the trajectory of the disease. Our studies confirmed that peripheral metabolic changes influenced by the exposome inform about cognitive changes, brain imaging changes, and ATN markers for disease confirming that peripheral and central changes are connected, in part through the metabolome.

Methods: To map the biochemical changes in AD, we used various targeted and untargeted metabolic platforms to profile ∼800 postmortem brain tissue, and ∼ 5000 blood samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!