The steady-state visually evoked potential (SSVEP) is an important type of BCI that has various potential applications, including in virtual environments using virtual reality (VR). However, compared to VR research, the majority of visual stimuli used in the SSVEP-BCI are plane stimulation targets (PSTs), with only a few studies using stereo stimulation targets (SSTs). To explore the parameter optimization of the SSVEP-BCI virtual SSTs, this paper presents a parameter knowledge graph. First, an online VR stereoscopic stimulation SSVEP-BCI system is built, and a parameter dictionary for VR stereoscopic stimulation parameters (shape, color, and frequency) is established. The online experimental results of 10 subjects under different parameter combinations were collected, and a knowledge graph was constructed to optimize the SST parameters. The best classification performances of the shape, color, and frequency parameters were sphere (91.85%), blue (94.26%), and 13Hz (95.93%). With various combinations of virtual reality stereo stimulation parameters, the performance of the SSVEP-BCI varies. Using the knowledge graph of the stimulus parameters can help intuitively and effectively select appropriate SST parameters. The knowledge graph of the stereo target stimulation parameters presented in this work is expected to offer a way to convert the application of the SSVEP-BCI and VR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216479 | PMC |
http://dx.doi.org/10.3390/brainsci13050710 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!