In the current research, an aqueous extract of fruit was used to produce silver nanoparticles (Ag NPs) in a sustainable manner. UV-visible spectrophotometry, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were used to characterize the synthesized nanoparticles. Synthesized Ag NPs were detected since their greatest absorption peak was seen at 460 nm. The synthesized Ag NPs were spherical and had an average size of about 50 nm, with agglomerated structures, as shown via SEM and TEM analyses. The biological activities of the synthesized Ag NPs were evaluated in terms of their antibacterial and antioxidant properties, as well as protein leakage and time-kill kinetics assays. The results suggest that the green synthesized Ag NPs possess significant antibacterial and antioxidant activities, making them a promising candidate for therapeutic applications. Furthermore, the study also evaluated the potential toxicological effects of the Ag NPs using zebrafish embryos as a model organism. The findings indicate that the synthesized Ag NPs did not induce any significant toxic effects on zebrafish embryos, further supporting their potential as therapeutic agents. In conclusion, the environmentally friendly production of Ag NPs using the extract from is a promising strategy for discovering novel therapeutic agents with prospective uses in biomedicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216392 | PMC |
http://dx.doi.org/10.3390/biomedicines11051472 | DOI Listing |
Sci Rep
January 2025
Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt.
In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
Glycosylation is an effective means to alter the structure and properties of plant compounds, influencing the pharmacological activity of natural products (NPs) to obtain highly active NPs. In nature, glucosides are the most widely distributed, while other glycosides such as xylosides are less common and present in lower quantities. This is due to the scarcity of xylosyltransferases with substrate promiscuity in nature, and the modification of their catalytic function is also quite challenging.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Cell Biology, School of Life Sciences, Central South University;
The aqueous extract from the bark of Eucommia ulmoides serves as a rich source of bioactive compounds with numerous health benefits. The protocol here aims to explore the preparation of zinc oxide (ZnO) nanoparticles using the Eucommia ulmoides bark-mediated polyisoprene-rich aqueous extract. Meanwhile, the proposed protocol is associated with the preparation of wound healing material by easing the process.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Environment and Chemical Engineering, Dalian University Dalian 116622 Liaoning P. R. China
Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China.
Background: It is well established that the interaction between osteogenesis and inflammation can impact bone tissue regeneration. The use of nanoparticles to treat and alleviate inflammation at the molecular level has the potential to improve the osteogenic microenvironment and serve as a therapeutic approach.
Methods: We have synthesized new hollow cerium oxide nanoparticles and doped with cathepsin B inhibitor (CA-074Me) to create novel CeO@CA-074Me NPs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!