Dysferlinopathies are a group of autosomal recessive muscular dystrophies caused by pathogenic variants in the DYSF gene. While several animal models of dysferlinopathy have been developed, most of them involve major disruptions of the Dysf gene locus that are not optimal for studying human dysferlinopathy, which is often caused by single nucleotide substitutions. In this study, the authors describe a new murine model of dysferlinopathy that carries a nonsense mutation in Dysf exon 32, which has been identified in several patients with dysferlinopathy. This mouse model, called Dysf , displays several molecular, histological, and functional defects observed in dysferlinopathy patients and other published mouse models. This mutant mouse model is expected to be useful for testing various therapeutic approaches such as termination codon readthrough, pharmacological approaches, and exon skipping. Therefore, the data presented in this study strongly support the use of this animal model for the development of preclinical strategies for the treatment of dysferlinopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216094PMC
http://dx.doi.org/10.3390/biomedicines11051438DOI Listing

Publication Analysis

Top Keywords

mouse model
12
mutant mouse
8
dysf gene
8
dysferlinopathy
6
model
5
dysferlin exon
4
exon nonsense
4
nonsense mutant
4
mouse
4
model pathological
4

Similar Publications

Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.

View Article and Find Full Text PDF

Diabetes nephropathy (DN) is a prevalent and severe microvascular diabetic complication. Despite the recent developments in germacrone-based therapies for DN, the underlying mechanisms of germacrone in DN remain poorly understood. This study used comprehensive bioinformatics analysis to identify critical microRNAs (miRNAs) and the potential underlying pathways related to germacrone activities.

View Article and Find Full Text PDF

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

Intracellular α-synuclein assemblies are sufficient to alter nanoscale diffusion in the striatal extracellular space.

NPJ Parkinsons Dis

December 2024

Univ. Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France.

α-synucleinopathies progression involves the spread of α-synuclein aggregates through the extracellular space (ECS). Single-particle tracking studies showed that α-synuclein-induced neurodegeneration increases ECS molecular diffusivity. To disentangle the consequences of neuronal loss versus α-synuclein-positive intracellular assemblies formation, we performed near-infrared single-particle tracking to characterise ECS rheology in the striatum of mouse models of α-synucleinopathies.

View Article and Find Full Text PDF

Fast and sensitive multivalent spatial pattern-recognition for circular RNA detection.

Nat Commun

December 2024

Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China.

While circular RNAs (circRNAs) exhibit lower abundance compared to corresponding linear RNAs, they demonstrate potent biological functions. Nevertheless, challenges arise from the low concentration and distinctive structural features of circRNAs, rendering existing methods operationally intricate and less sensitive. Here, we engineer an intelligent tetrahedral DNA framework (TDF) possessing precise spatial pattern-recognition properties with exceptional sensing speed and sensitivity for circRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!